ﻻ يوجد ملخص باللغة العربية
We discuss various aspects of a neutrino physics program that can be carried out with the neutrino Beam-Dump eXperiment DRIFT ($ u$BDX-DRIFT) detector using neutrino beams produced in next generation neutrino facilities. $ u$BDX-DRIFT is a directional low-pressure TPC detector suitable for measurements of coherent elastic neutrino-nucleus scattering (CE$ u$NS) using a variety of gaseous target materials which include carbon disulfide, carbon tetrafluoride and tetraethyllead, among others. The neutrino physics program includes standard model (SM) measurements and beyond the standard model (BSM) physics searches. Focusing on the Long Baseline Neutrino Facility (LBNF) beamline at Fermilab, we first discuss basic features of the detector and estimate backgrounds, including beam-induced neutron backgrounds. We then quantify the CE$ u$NS signal in the different target materials and study the sensitivity of $ u$BDX-DRIFT to measurements of the weak mixing angle and neutron density distributions. We consider as well prospects for new physics searches, in particular sensitivities to effective neutrino non-standard interactions.
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino
The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEvNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assu
We calculate coherent elastic neutrino-nucleus scattering cross sections on spin-0 nuclei (e.g. $^{40}$Ar and $^{28}$Si) at energies below 100 MeV within the Standard Model and account for all effects of permille size. We provide a complete error bud
The cross section for coherent elastic neutrino-nucleus scattering (CE$ u$NS) depends on the response of the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a $Z$ boson. This is typically subsumed into a
Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitat