ﻻ يوجد ملخص باللغة العربية
As a judicious correspondence to the classical maxcut, the anti-Cheeger cut has more balanced structure, but few numerical results on it have been reported so far. In this paper, we propose a continuous iterative algorithm for the anti-Cheeger cut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the objection function values are monotonically updated and the iteration points converge to a local optima in finite steps via an appropriate subgradient selection. It can also be easily combined with the maxcut iterations for breaking out of local optima and improving the solution quality thanks to the similarity between the anti-Cheeger cut problem and the maxcut problem. Numerical experiments on G-set demonstrate the performance.
We propose a simple iterative (SI) algorithm for the maxcut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the cut values ar
This article derives lower bounds on the convergence rate of continuous-time gradient-based optimization algorithms. The algorithms are subjected to a time-normalization constraint that avoids a reparametrization of time in order to make the discussi
Nesterovs well-known scheme for accelerating gradient descent in convex optimization problems is adapted to accelerating stationary iterative solvers for linear systems. Compared with classical Krylov subspace acceleration methods, the proposed schem
We examine popular gradient-based algorithms for nonlinear control in the light of the modern complexity analysis of first-order optimization algorithms. The examination reveals that the complexity bounds can be clearly stated in terms of calls to a
The Potts model has many applications. It is equivalent to some min-cut and max-flow models. Primal-dual algorithms have been used to solve these problems. Due to the special structure of the models, convergence proof is still a difficult problem. In