ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapidly-converging multigrid reconstruction of cone-beam tomographic data

70   0   0.0 ( 0 )
 نشر من قبل Heyang Thomas Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the space-filling source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.



قيم البحث

اقرأ أيضاً

We present a novel reconstruction algorithm based on a general cone-beam CT forward model which is capable of incorporating the blur and noise correlations that are exhibited in flat-panel CBCT measurement data. Specifically, the proposed model may i nclude scintillator blur, focal-spot blur, and noise correlations due to light spread in the scintillator. The proposed algorithm (GPL-BC) uses a Gaussian Penalized-Likelihood objective function which incorporates models of Blur and Correlated noise. In a simulation study, GPL-BC was able to achieve lower bias as compared to deblurring followed by FDK as well as a model-based reconstruction method without integration of measurement blur. In the same study, GPL-BC was able to achieve better line-pair reconstructions (in terms of segmented-image accuracy) as compared to deblurring followed by FDK, a model based method without blur, and a model based method with blur but not noise correlations. A prototype extremities quantitative cone-beam CT test bench was used to image a physical sample of human trabecular bone. These data were used to compare reconstructions using the proposed method and model based methods without blur and/or correlation to a registered {mu}CT image of the same bone sample. The GPL-BC reconstructions resulted in more accurate trabecular bone segmentation. Multiple trabecular bone metrics, including Trabecular Thickness (Tb.Th.) were computed for each reconstruction approach as well as the {mu}CT volume. The GPL-BC reconstruction provided the most accurate Tb.Th. measurement, 0.255 mm, as compared to the {mu}CT derived value of 0.193 mm, followed by the GPL-B reconstruction, the GPL-I reconstruction, and then the FDK reconstruction (0.271 mm, 0.309 mm, and 0.335 mm, respectively).
222 - Hao Yan , Xiaoyu Wang , Wotao Yin 2012
Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising technique for extracting respiratory signal. We also identified the applicability of each existing method.
176 - Xin Zhen , Xuejun Gu , Hao Yan 2012
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons.
506 - Xun Jia , Hao Yan , Laura Cervino 2012
Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic c omputations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scaling its amplitude. For a typical CBCT projection with a poly-energetic spectrum, the calculation time for the primary signal is 1.2~2.3 sec, while the MC simulations take 28.1~95.3 sec. Computation time for all other steps is negligible. The ray-tracing primary signal matches well with the primary part of the MC simulation result. The MC simulated scatter signal using gDRR is in agreement with EGSnrc results with a relative difference of 3.8%. A noise calibration process is conducted to calibrate gDRR against a real CBCT scanner. The calculated projections are accurate and realistic, such that beam-hardening artifacts and scatter artifacts can be reproduced using the simulated projections. The noise amplitudes in the CBCT images reconstructed from the simulated projections also agree with those in the measured images at corresponding mAs levels.
We analyze in detail, beyond the usual scaling hypothesis, the finite-size convergence of static quantities toward the thermodynamic limit. In this way we are able to obtain sequences of pseudo-critical points which display a faster convergence rate as compared to currently used methods. The approaches are valid in any spatial dimension and for any value of the dynamic exponent. We demonstrate the effectiveness of our methods both analytically on the basis of the one dimensional XY model, and numerically considering c = 1 transitions occurring in non integrable spin models. In particular, we show that these general methods are able to locate precisely the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state properties on relatively small systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا