ترغب بنشر مسار تعليمي؟ اضغط هنا

S2P2: Self-Supervised Goal-Directed Path Planning Using RGB-D Data for Robotic Wheelchairs

141   0   0.0 ( 0 )
 نشر من قبل Hengli Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Path planning is a fundamental capability for autonomous navigation of robotic wheelchairs. With the impressive development of deep-learning technologies, imitation learning-based path planning approaches have achieved effective results in recent years. However, the disadvantages of these approaches are twofold: 1) they may need extensive time and labor to record expert demonstrations as training data; and 2) existing approaches could only receive high-level commands, such as turning left/right. These commands could be less sufficient for the navigation of mobile robots (e.g., robotic wheelchairs), which usually require exact poses of goals. We contribute a solution to this problem by proposing S2P2, a self-supervised goal-directed path planning approach. Specifically, we develop a pipeline to automatically generate planned path labels given as input RGB-D images and poses of goals. Then, we present a best-fit regression plane loss to train our data-driven path planning model based on the generated labels. Our S2P2 does not need pre-built maps, but it can be integrated into existing map-based navigation systems through our framework. Experimental results show that our S2P2 outperforms traditional path planning algorithms, and increases the robustness of existing map-based navigation systems. Our project page is available at https://sites.google.com/view/s2p2.



قيم البحث

اقرأ أيضاً

We propose a teleoperation system that uses a single RGB-D camera as the human motion capture device. Our system can perform general manipulation tasks such as cloth folding, hammering and 3mm clearance peg in hole. We propose the use of non-Cartesia n oblique coordinate frame, dynamic motion scaling and reposition of operator frames to increase the flexibility of our teleoperation system. We hypothesize that lowering the barrier of entry to teleoperation will allow for wider deployment of supervised autonomy system, which will in turn generates realistic datasets that unlock the potential of machine learning for robotic manipulation.
While reinforcement learning provides an appealing formalism for learning individual skills, a general-purpose robotic system must be able to master an extensive repertoire of behaviors. Instead of learning a large collection of skills individually, can we instead enable a robot to propose and practice its own behaviors automatically, learning about the affordances and behaviors that it can perform in its environment, such that it can then repurpose this knowledge once a new task is commanded by the user? In this paper, we study this question in the context of self-supervised goal-conditioned reinforcement learning. A central challenge in this learning regime is the problem of goal setting: in order to practice useful skills, the robot must be able to autonomously set goals that are feasible but diverse. When the robots environment and available objects vary, as they do in most open-world settings, the robot must propose to itself only those goals that it can accomplish in its present setting with the objects that are at hand. Previous work only studies self-supervised goal-conditioned RL in a single-environment setting, where goal proposals come from the robots past experience or a generative model are sufficient. In more diverse settings, this frequently leads to impossible goals and, as we show experimentally, prevents effective learning. We propose a conditional goal-setting model that aims to propose goals that are feasible from the robots current state. We demonstrate that this enables self-supervised goal-conditioned off-policy learning with raw image observations in the real world, enabling a robot to manipulate a variety of objects and generalize to new objects that were not seen during training.
Approximate computing is a computation domain which can be used to trade time and energy with quality and therefore is useful in embedded systems. Energy is the prime resource in battery-driven embedded systems, like robots. Approximate computing can be used as a technique to generate approximate version of the control functionalities of a robot, enabling it to ration energy for computation at the cost of degraded quality. Usually, the programmer of the function specifies the extent of degradation that is safe for the overall safety of the system. However, in a collaborative environment, where several sub-systems co-exist and some of the functionality of each of them have been approximated, the safety of the overall system may be compromised. In this paper, we consider multiple identical robots operate in a warehouse, and the path planning function of the robot is approximated. Although the planned paths are safe for individual robots (i.e. they do not collide with the racks), we show that this leads to a collision among the robots. So, a controlled approximation needs to be carried out in such situations to harness the full power of this new paradigm if it needs to be a mainstream paradigm in future.
In robots, nonprehensile manipulation operations such as pushing are a useful way of moving large, heavy or unwieldy objects, moving multiple objects at once, or reducing uncertainty in the location or pose of objects. In this study, we propose a rea ctive and adaptive method for robotic pushing that uses rich feedback from a high-resolution optical tactile sensor to control push movements instead of relying on analytical or data-driven models of push interactions. Specifically, we use goal-driven tactile exploration to actively search for stable pushing configurations that cause the object to maintain its pose relative to the pusher while incrementally moving the pusher and object towards the target. We evaluate our method by pushing objects across planar and curved surfaces. For planar surfaces, we show that the method is accurate and robust to variations in initial contact position/angle, object shape and start position; for curved surfaces, the performance is degraded slightly. An immediate consequence of our work is that it shows that explicit models of push interactions might be sufficient but are not necessary for this type of task. It also raises the interesting question of which aspects of the system should be modelled to achieve the best performance and generalization across a wide range of scenarios. Finally, it highlights the importance of testing on non-planar surfaces and in other more complex environments when developing new methods for robotic pushing.
Collecting and automatically obtaining reward signals from real robotic visual data for the purposes of training reinforcement learning algorithms can be quite challenging and time-consuming. Methods for utilizing unlabeled data can have a huge poten tial to further accelerate robotic learning. We consider here the problem of performing manipulation tasks from pixels. In such tasks, choosing an appropriate state representation is crucial for planning and control. This is even more relevant with real images where noise, occlusions and resolution affect the accuracy and reliability of state estimation. In this work, we learn a latent state representation implicitly with deep reinforcement learning in simulation, and then adapt it to the real domain using unlabeled real robot data. We propose to do so by optimizing sequence-based self supervised objectives. These exploit the temporal nature of robot experience, and can be common in both the simulated and real domains, without assuming any alignment of underlying states in simulated and unlabeled real images. We propose Contrastive Forward Dynamics loss, which combines dynamics model learning with time-contrastive techniques. The learned state representation that results from our methods can be used to robustly solve a manipulation task in simulation and to successfully transfer the learned skill on a real system. We demonstrate the effectiveness of our approaches by training a vision-based reinforcement learning agent for cube stacking. Agents trained with our method, using only 5 hours of unlabeled real robot data for adaptation, shows a clear improvement over domain randomization, and standard visual domain adaptation techniques for sim-to-real transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا