ﻻ يوجد ملخص باللغة العربية
Due to the applications in meteorological broadcasts, radio navigation and underwater communications, low-frequency(LF) receiving antennas have been actively studied. However, because the frequency range of LF antenna is 30kHz to 300kHz, its electromagnetic wavelength is 1km to 10km, which makes LF electromagnetic antennas difficult to be implemented in miniaturized or portable devices. This article presents a miniaturized LF magnetoelectric(ME) receiving antenna with an integrated DC magnetic bias. The antenna is based on the magnetoelectric effect and operates by resonance at its mechanical resonant frequency. Thus, compared with traditional LF wire antennas, the dimension of ME antenna is reduced significantly. Compared with prior art of ME antennas which do not have DC magnetic bias, higher performance can be achieved by integrating the miniaturized DC magnetic bias. Compared with prior art of an ME antenna with bulky external DC magnetic bias, the ME antenna with an integrated DC magnetic bias significantly reduce its dimension. Magnetostrictive TbDyFe2(Terfenol-D) and piezoelectric lead zirconate titanate(PZT) thin films are bonded together to form the 38x12x5.8mm3 ME receiving antenna. Four 10x10x10mm3 Rb magnets are implemented to provide an optimal DC bias for the antenna. A maximum operation distance of 2.5m is demonstrated with the DC magnetic field bias, 2.27 times of the maximum operation distance of the antenna without DC magnet field bias. The efficiency, gain and quality factor the ME receiving antenna is also characterized. The miniaturized LF ME antenna could have potential applications in portable electronics, internet of things and underwater communications.
Low frequency communication systems offer significant potential in portable electronics and internet of things (IoT) applications due to the low propagation loss and long transmission range. However, because the dimension of electrical antenna is com
Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability muc
Electro-optic phase modulators are critical components in modern communication, microwave photonic, and quantum photonic systems. Important for these applications is to achieve modulators with low half-wave voltage at high frequencies. Here we demons
Shape-programmable soft materials that exhibit integrated multifunctional shape manipulations, including reprogrammable, untethered, fast, and reversible shape transformation and locking, are highly desirable for a plethora of applications, including
Inducing a large refractive-index change is the holy grail of reconfigurable photonic structures, a goal that has long been the driving force behind the discovery of new optical material platforms. Recently, the unprecedentedly large refractive-index