ﻻ يوجد ملخص باللغة العربية
We consider performing phase estimation under the following conditions: we are given only one copy of the input state, the input state does not have to be an eigenstate of the unitary, and the state must not be measured. Most quantum estimation algorithms make assumptions that make them unsuitable for this coherent setting, leaving only the textbook approach. We present novel algorithms for phase, energy, and amplitude estimation that are both conceptually and computationally simpler than the textbook method, featuring both a smaller query complexity and ancilla footprint. They do not require a quantum Fourier transform, and they do not require a quantum sorting network to compute the median of several estimates. Instead, they use block-encoding techniques to compute the estimate one bit at a time, performing all amplification via singular value transformation. These improved subroutines accelerate the performance of quantum Metropolis sampling and quantum Bayesian inference.
This paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists
Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conventional quantum phase estimation algorithm for estimating the ground and excited-state energies of a quantum many-body system. While QKSD algorithms
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system $Ax = b$, we show that there is a classical algorithm that outputs a dat
We derive the form of the quantum filter equation describing the continuous observation of the phase of a quantum system in an arm of an interferometer via non-demolition measurements when the statistics of an input field used for the indirect measur
In this paper we derive from simple and reasonable assumptions a Gaussian noise model for NISQ Quantum Amplitude Estimation (QAE). We provide results from QAE run on various IBM superconducting quantum computers and Honeywells H1 trapped-ion quantum