ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularized Estimation of Kronecker-Structured Covariance Matrix

69   0   0.0 ( 0 )
 نشر من قبل Lei Xie
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates regularized estimation of Kronecker-structured covariance matrices (CM) for complex elliptically symmetric (CES) data. To obtain a well-conditioned estimate of the CM, we add penalty terms of Kullback-Leibler divergence to the negative log-likelihood function of the associated complex angular Gaussian (CAG) distribution. This is shown to be equivalent to regularizing Tylers fixed-point equations by shrinkage. A sufficient condition that the solution exists is discussed. An iterative algorithm is applied to solve the resulting fixed-point iterations and its convergence is proved. In order to solve the critical problem of tuning the shrinkage factors, we then introduce three methods by exploiting oracle approximating shrinkage (OAS) and cross-validation (CV). When the training samples are limited, the proposed estimator, referred to as the robust shrinkage Kronecker estimator (RSKE), has better performance compared with several existing methods. Simulations are conducted for validating the proposed estimator and demonstrating its high performance.



قيم البحث

اقرأ أيضاً

107 - Lei Xie , Zishu He , Jun Tong 2021
This paper considers the regularized estimation of covariance matrices (CM) of high-dimensional (compound) Gaussian data for minimum variance distortionless response (MVDR) beamforming. Linear shrinkage is applied to improve the accuracy and conditio n number of the CM estimate for low-sample-support cases. We focus on data-driven techniques that automatically choose the linear shrinkage factors for shrinkage sample covariance matrix ($text{S}^2$CM) and shrinkage Tylers estimator (STE) by exploiting cross validation (CV). We propose leave-one-out cross-validation (LOOCV) choices for the shrinkage factors to optimize the beamforming performance, referred to as $text{S}^2$CM-CV and STE-CV. The (weighted) out-of-sample output power of the beamfomer is chosen as a proxy of the beamformer performance and concise expressions of the LOOCV cost function are derived to allow fast optimization. For the large system regime, asymptotic approximations of the LOOCV cost functions are derived, yielding the $text{S}^2$CM-AE and STE-AE. In general, the proposed algorithms are able to achieve near-oracle performance in choosing the linear shrinkage factors for MVDR beamforming. Simulation results are provided for validating the proposed methods.
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The cova riance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
Millimeter wave beam alignment (BA) is a challenging problem especially for large number of antennas. Compressed sensing (CS) tools have been exploited due to the sparse nature of such channels. This paper presents a novel deterministic CS approach f or BA. Our proposed sensing matrix which has a Kronecker-based structure is sparse, which means it is computationally efficient. We show that our proposed sensing matrix satisfies the restricted isometry property (RIP) condition, which guarantees the reconstruction of the sparse vector. Our approach outperforms existing random beamforming techniques in practical low signal to noise ratio (SNR) scenarios.
We seek to improve estimates of the power spectrum covariance matrix from a limited number of simulations by employing a novel statistical technique known as shrinkage estimation. The shrinkage technique optimally combines an empirical estimate of th e covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test this technique on N-body simulations and evaluate its performance by estimating cosmological parameters. Using a simple diagonal target, we show that the shrinkage estimator significantly outperforms both the empirical covariance and the target individually when using a small number of simulations. We find that reducing noise in the covariance estimate is essential for properly estimating the values of cosmological parameters as well as their confidence intervals. We extend our method to the jackknife covariance estimator and again find significant improvement, though simulations give better results. Even for thousands of simulations we still find evidence that our method improves estimation of the covariance matrix. Because our method is simple, requires negligible additional numerical effort, and produces superior results, we always advocate shrinkage estimation for the covariance of the power spectrum and other large-scale structure measurements when purely theoretical modeling of the covariance is insufficient.
70 - Wei Cui , Xu Zhang , 2018
Covariance matrix estimation concerns the problem of estimating the covariance matrix from a collection of samples, which is of extreme importance in many applications. Classical results have shown that $O(n)$ samples are sufficient to accurately est imate the covariance matrix from $n$-dimensional independent Gaussian samples. However, in many practical applications, the received signal samples might be correlated, which makes the classical analysis inapplicable. In this paper, we develop a non-asymptotic analysis for the covariance matrix estimation from correlated Gaussian samples. Our theoretical results show that the error bounds are determined by the signal dimension $n$, the sample size $m$, and the shape parameter of the distribution of the correlated sample covariance matrix. Particularly, when the shape parameter is a class of Toeplitz matrices (which is of great practical interest), $O(n)$ samples are also sufficient to faithfully estimate the covariance matrix from correlated samples. Simulations are provided to verify the correctness of the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا