ﻻ يوجد ملخص باللغة العربية
The Canada-France Imaging Survey (CFIS) will consist of deep, high-resolution r-band imaging over ~5000 square degrees of the sky, representing a first-rate opportunity to identify recently-merged galaxies. Due to the large number of galaxies in CFIS, we investigate the use of a convolutional neural network (CNN) for automated merger classification. Training samples of post-merger and isolated galaxy images are generated from the IllustrisTNG simulation processed with the observational realism code RealSim. The CNNs overall classification accuracy is 88 percent, remaining stable over a wide range of intrinsic and environmental parameters. We generate a mock galaxy survey from IllustrisTNG in order to explore the expected purity of post-merger samples identified by the CNN. Despite the CNNs good performance in training, the intrinsic rarity of post-mergers leads to a sample that is only ~6 percent pure when the default decision threshold is used. We investigate trade-offs in purity and completeness with a variable decision threshold and find that we recover the statistical distribution of merger-induced star formation rate enhancements. Finally, the performance of the CNN is compared with both traditional automated methods and human classifiers. The CNN is shown to outperform Gini-M20 and asymmetry methods by an order of magnitude in post-merger sample purity on the mock survey data. Although the CNN outperforms the human classifiers on sample completeness, the purity of the post-merger sample identified by humans is frequently higher, indicating that a hybrid approach to classifications may be an effective solution to merger classifications in large surveys.
To determine the importance of merging galaxies to galaxy evolution, it is necessary to design classification tools that can identify different types and stages of merging galaxies. Previously, using GADGET-3/SUNRISE simulations of merging galaxies a
Cover song identification represents a challenging task in the field of Music Information Retrieval (MIR) due to complex musical variations between query tracks and cov
Gait as a biometric property for person identification plays a key role in video surveillance and security applications. In gait recognition, normally, gait feature such as Gait Energy Image (GEI) is extracted from one full gait cycle. However in man
In this paper, a deep neural network based ensemble method is experimented for automatic identification of skin disease from dermoscopic images. The developed algorithm is applied on the task3 of the ISIC 2018 challenge dataset (Skin Lesion Analysis Towards Melanoma Detection).
We utilize techniques from deep learning to identify signatures of stellar feedback in simulated molecular clouds. Specifically, we implement a deep neural network with an architecture similar to U-Net and apply it to the problem of identifying wind-