ترغب بنشر مسار تعليمي؟ اضغط هنا

Morita equivalence and Morita duality for rings with local units and subcategory of projective unitary modules

77   0   0.0 ( 0 )
 نشر من قبل Alireza Nasr-Isfahani
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Morita equivalence and Morita duality for rings with local units. We extend the Auslanders results on the theory of Morita equivalence and the Azumaya-Morita duality theorem to rings with local units. As a consequence, we give a version of Morita theorem and Azumaya-Morita duality theorem over rings with local units in terms of their full subcategory of finitely generated projective unitary modules and full subcategory of finitely generated injective unitary modules.



قيم البحث

اقرأ أيضاً

We review Morita equivalence for finite type $k$-algebras $A$ and also a weakening of Morita equivalence which we call stratified equivalence. The spectrum of $A$ is the set of equivalence classes of irreducible $A$-modules. For any finite type $k$-a lgebra $A$, the spectrum of $A$ is in bijection with the set of primitive ideals of $A$. The stratified equivalence relation preserves the spectrum of $A$ and also preserves the periodic cyclic homology of $A$. However, the stratified equivalence relation permits a tearing apart of strata in the primitive ideal space which is not allowed by Morita equivalence. A key example illustrating the distinction between Morita equivalence and stratified equivalence is provided by affine Hecke algebras associated to extended affine Weyl groups.
Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well -known criteria are related to one another, we investigate an intermediate criterion called Morita equivalence.
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a Gorenstein $mathbf{k}$-algebra, and let $V$ be an indecomposable finitely generated non-projective Gorenstein-projective left $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$. In this article, we prove that the universal deformation rings $R(Lambda,V)$ and $R(Lambda,Omega_Lambda V)$ are isomorphic, where $Omega_Lambda V$ denotes the first syzygy of $V$ as a left $Lambda$-module. We also prove the following result. Assume that $Gamma$ is another Gorenstein $mathbf{k}$-algebra such that there exists $ell geq 0$ and a pair of bimodules $({_Gamma}X_Lambda, {_Lambda}Y_Gamma)$ that induces a singular equivalence of Morita type with level $ell$ (as introduced by Z. Wang). Then the left $Gamma$-module $Xotimes_Lambda V$ is also Gorenstein-projective and the universal deformation rings $R(Gamma, Xotimes_Lambda V)$ and $R(Lambda, V)$ are isomorphic.
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the thir d author that $V$ has a well-defined versal deformation ring $R(Lambda, V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$. The third author also proved that if $Lambda$ is a Gorenstein $mathbf{k}$-algebra and $V$ is a Cohen-Macaulay $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$, then $R(Lambda, V)$ is universal. In this article we prove that the isomorphism class of a versal deformation ring is preserved under singular equivalence of Morita type between Gorenstein $mathbf{k}$-algebras.
273 - G. K. Eleftherakis 2014
We define an equivalence relation between bimodules over maximal abelian selfadjoint algebras (masa bimodules) which we call spatial Morita equivalence. We prove that two reflexive masa bimodules are spatially Morita equivalent iff their (essential) bilattices are isomorphic. We also prove that if S^1, S^2 are bilattices which correspond to reflexive masa bimodules U_1, U_2 and f: S^1rightarrow S^2 is an onto bilattice homomorphism, then: (i) If U_1 is synthetic, then U_2 is synthetic. (ii) If U_2 contains a nonzero compact (or a finite or a rank 1) operator, then U_1 also contains a nonzero compact (or a finite or a rank 1) operator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا