ﻻ يوجد ملخص باللغة العربية
We study Morita equivalence and Morita duality for rings with local units. We extend the Auslanders results on the theory of Morita equivalence and the Azumaya-Morita duality theorem to rings with local units. As a consequence, we give a version of Morita theorem and Azumaya-Morita duality theorem over rings with local units in terms of their full subcategory of finitely generated projective unitary modules and full subcategory of finitely generated injective unitary modules.
We review Morita equivalence for finite type $k$-algebras $A$ and also a weakening of Morita equivalence which we call stratified equivalence. The spectrum of $A$ is the set of equivalence classes of irreducible $A$-modules. For any finite type $k$-a
Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a Gorenstein $mathbf{k}$-algebra, and let $V$ be an indecomposable finitely generated non-projective Gorenstein-projective left $Lambda$-module whose stable endomorphism ring is
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the thir
We define an equivalence relation between bimodules over maximal abelian selfadjoint algebras (masa bimodules) which we call spatial Morita equivalence. We prove that two reflexive masa bimodules are spatially Morita equivalent iff their (essential)