ترغب بنشر مسار تعليمي؟ اضغط هنا

VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments

264   0   0.0 ( 0 )
 نشر من قبل Lizhen Nie
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the rising abundance of observational data with continuous treatments, we investigate the problem of estimating the average dose-response curve (ADRF). Available parametric methods are limited in their model space, and previous attempts in leveraging neural network to enhance model expressiveness relied on partitioning continuous treatment into blocks and using separate heads for each block; this however produces in practice discontinuous ADRFs. Therefore, the question of how to adapt the structure and training of neural network to estimate ADRFs remains open. This paper makes two important contributions. First, we propose a novel varying coefficient neural network (VCNet) that improves model expressiveness while preserving continuity of the estimated ADRF. Second, to improve finite sample performance, we generalize targeted regularization to obtain a doubly robust estimator of the whole ADRF curve.



قيم البحث

اقرأ أيضاً

Unsupervised and self-supervised learning approaches have become a crucial tool to learn representations for downstream prediction tasks. While these approaches are widely used in practice and achieve impressive empirical gains, their theoretical und erstanding largely lags behind. Towards bridging this gap, we present a unifying perspective where several such approaches can be viewed as imposing a regularization on the representation via a learnable function using unlabeled data. We propose a discriminative theoretical framework for analyzing the sample complexity of these approaches, which generalizes the framework of (Balcan and Blum, 2010) to allow learnable regularization functions. Our sample complexity bounds show that, with carefully chosen hypothesis classes to exploit the structure in the data, these learnable regularization functions can prune the hypothesis space, and help reduce the amount of labeled data needed. We then provide two concrete examples of functional regularization, one using auto-encoders and the other using masked self-supervision, and apply our framework to quantify the reduction in the sample complexity bound of labeled data. We also provide complementary empirical results to support our analysis.
Practitioners in diverse fields such as healthcare, economics and education are eager to apply machine learning to improve decision making. The cost and impracticality of performing experiments and a recent monumental increase in electronic record ke eping has brought attention to the problem of evaluating decisions based on non-experimental observational data. This is the setting of this work. In particular, we study estimation of individual-level causal effects, such as a single patients response to alternative medication, from recorded contexts, decisions and outcomes. We give generalization bounds on the error in estimated effects based on distance measures between groups receiving different treatments, allowing for sample re-weighting. We provide conditions under which our bound is tight and show how it relates to results for unsupervised domain adaptation. Led by our theoretical results, we devise representation learning algorithms that minimize our bound, by regularizing the representations induced treatment group distance, and encourage sharing of information between treatment groups. We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances. Finally, an experimental evaluation on real and synthetic data shows the value of our proposed representation architecture and regularization scheme.
Multi-task learning (MTL) is a common paradigm that seeks to improve the generalization performance of task learning by training related tasks simultaneously. However, it is still a challenging problem to search the flexible and accurate architecture that can be shared among multiple tasks. In this paper, we propose a novel deep learning model called Task Adaptive Activation Network (TAAN) that can automatically learn the optimal network architecture for MTL. The main principle of TAAN is to derive flexible activation functions for different tasks from the data with other parameters of the network fully shared. We further propose two functional regularization methods that improve the MTL performance of TAAN. The improved performance of both TAAN and the regularization methods is demonstrated by comprehensive experiments.
Causal inference methods are widely applied in the fields of medicine, policy, and economics. Central to these applications is the estimation of treatment effects to make decisions. Current methods make binary yes-or-no decisions based on the treatme nt effect of a single outcome dimension. These methods are unable to capture continuous space treatment policies with a measure of intensity. They also lack the capacity to consider the complexity of treatment such as matching candidate treatments with the subject. We propose to formulate the effectiveness of treatment as a parametrizable model, expanding to a multitude of treatment intensities and complexities through the continuous policy treatment function, and the likelihood of matching. Our proposal to decompose treatment effect functions into effectiveness factors presents a framework to model a rich space of actions using causal inference. We utilize deep learning to optimize the desired holistic metric space instead of predicting single-dimensional treatment counterfactual. This approach employs a population-wide effectiveness measure and significantly improves the overall effectiveness of the model. The performance of our algorithms is. demonstrated with experiments. When using generic continuous space treatments and matching architecture, we observe a 41% improvement upon prior art with cost-effectiveness and 68% improvement upon a similar method in the average treatment effect. The algorithms capture subtle variations in treatment space, structures the efficient optimizations techniques, and opens up the arena for many applications.
We propose novel estimators for categorical and continuous treatments by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contras ts of interest, either when the model explaining treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, we show that the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. Our analysis of a data set suggests a nonlinear effect of BMI on the decline in self reported health.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا