ﻻ يوجد ملخص باللغة العربية
For centuries researchers have used sound to monitor and study wildlife. Traditionally, conservationists have identified species by ear; however, it is now common to deploy audio recording technology to monitor animal and ecosystem sounds. Animals use sound for communication, mating, navigation and territorial defence. Animal sounds provide valuable information and help conservationists to quantify biodiversity. Acoustic monitoring has grown in popularity due to the availability of diverse sensor types which include camera traps, portable acoustic sensors, passive acoustic sensors, and even smartphones. Passive acoustic sensors are easy to deploy and can be left running for long durations to provide insights on habitat and the sounds made by animals and illegal activity. While this technology brings enormous benefits, the amount of data that is generated makes processing a time-consuming process for conservationists. Consequently, there is interest among conservationists to automatically process acoustic data to help speed up biodiversity assessments. Processing these large data sources and extracting relevant sounds from background noise introduces significant challenges. In this paper we outline an approach for achieving this using state of the art in machine learning to automatically extract features from time-series audio signals and modelling deep learning models to classify different bird species based on the sounds they make. The acquired bird songs are processed using mel-frequency cepstrum (MFC) to extract features which are later classified using a multilayer perceptron (MLP). Our proposed method achieved promising results with 0.74 sensitivity, 0.92 specificity and an accuracy of 0.74.
From ancient to modern times, acoustic structures have been used to control the propagation of acoustic waves. However, the design of the acoustic structures has remained widely a time-consuming and computational resource-consuming iterative process.
In this work, we consider applying machine learning to the analysis and compression of audio signals in the context of monitoring elephants in sub-Saharan Africa. Earths biodiversity is increasingly under threat by sources of anthropogenic change (e.
In this work, we investigated the teacher-student training paradigm to train a fully learnable multi-channel acoustic model for far-field automatic speech recognition (ASR). Using a large offline teacher model trained on beamformed audio, we trained
Deep clustering (DC) and utterance-level permutation invariant training (uPIT) have been demonstrated promising for speaker-independent speech separation. DC is usually formulated as two-step processes: embedding learning and embedding clustering, wh
We present an experimental investigation into the effectiveness of transfer learning and bottleneck feature extraction in detecting COVID-19 from audio recordings of cough, breath and speech. This type of screening is non-contact, does not require