ترغب بنشر مسار تعليمي؟ اضغط هنا

Tully-Fisher Distances and Dynamical Mass Constraints for 24 Host Galaxies of Reverberation-Mapped AGN

203   0   0.0 ( 0 )
 نشر من قبل Justin Robinson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Tully-Fisher distances for 24 AGN host galaxies with black hole mass ($M_textrm{{BH}}$) measurements from reverberation mapping, as well as the first calibration of the $V-$band Tully-Fisher relation. Combining our measurements of HI 21cm emission with $HST$ and ground-based optical and near-infrared images allows multiple distance measurements for 19 galaxies and single measurements for the remaining 5. Separation of the nucleus from its host galaxy via surface brightness decomposition yields galaxy-only luminosities, thus allowing measurements of the distance moduli free of contamination from the AGN. For 14 AGN hosts, these are the first reported distances independent of redshift, and hence independent of peculiar velocities. For the remaining galaxies, we show good agreement between our distances and those previously reported from surface brightness fluctuations (SBF) and Cepheids. We also determine the total galaxy mass enclosed within the estimated HI radius, which when compared to the baryonic content allows for constraints on the dark matter masses. We find a typical mass fraction of $M_{textrm{DM}}$/$M_{textrm{DYN}}$ = 62%, and find significant correlations between $M_{textrm{BH}}$ $-$ $M_{textrm{DYN}}$ and $M_{textrm{BH}}$ $-$ $M_{textrm{DM}}$. Finally, we scale our galaxy radii based on estimated relationships between visible and halo radii and assume a flat rotation curve out to the halo radius to approximate $M_{textrm{HALO}}$. Over the range of $M_{textrm{BH}}$ and $M_{textrm{HALO}}$ in this sample, we find good agreement with observationally-constrained relationships between $M_{textrm{BH}}$ and $M_{textrm{HALO}}$ and with hydrodynamical simulations.



قيم البحث

اقرأ أيضاً

This paper involves a data release of the observational campaign: Cosmicflows with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the survey is presented. An additional ~ 400 galaxies from various other Spitzer surveys are also a nalyzed. CFS complements the Spitzer Survey of Stellar Structure in Galaxies, that provides photometry for an additional 2352 galaxies, by extending observations to low galactic latitudes (|b|<30 degrees). Among these galaxies are calibrators, selected in K band, of the Tully-Fisher relation. The addition of new calibrators demonstrate the robustness of the previously released calibration. Our estimate of the Hubble constant using supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc. Distance-derived radial peculiar velocities, for the 1935 galaxies with all the available parameters, will be incorporated into a new data release of the Cosmicflows project. The size of the previous catalog will be increased by 20%, including spatial regions close to the Zone of Avoidance.
We present the distances of 9792 spiral galaxies lying within 15,000 km/s using the relation between luminosity and rotation rate of spiral galaxies. The sample is dominantly, but not exclusively, drawn from galaxies detected in the course of the ALF ALFA HI survey with the Arecibo Telescope. Relations between hi line widths and luminosity are calibrated at SDSS u, g, r, i, z bands and WISE W1 and W2 bands. By exploiting secondary parameters, particularly color indices, we address discrepancies between measured distances at different wave bands with unprecedented detail. We provide a catalog that includes reduced kinematic, photometric, and inclination parameters. We also describe a machine learning algorithm, based on the random forest technique that predicts the dust attenuation in spirals lacking infrared photometry. We determine a Hubble Constant value of H0 = 75.1+-0.2 (stat.), with potential systematics up to +-3 km/s/Mpc.
75 - T. Shanks 2002
We first discuss why the uncomfortable fine-tuning of the parameters of the Lambda-CDM cosmological model provides continuing, strong motivation to investigate Hubbles Constant. Then we review evidence from the HST Key Project that there is a signifi cant scale error between raw Cepheid and Tully-Fisher distances. An analysis of mainly HST Distance Scale Key Project data shows a correlation between host galaxy metallicity and the rms scatter around the Cepheid P-L relation, which may support a recent suggestion that the P-L metallicity dependence is stronger than expected. If Cepheids do have a significant metallicity dependence then the Tully-Fisher scale error increases and the distances of the Virgo and Fornax clusters extend to more than 20Mpc, decreasing the value of Ho. Finally, if the Cepheids have a metallicity dependence then so do Type Ia Supernovae since the metallicity corrected Cepheid distances to eight galaxies with SNIa would then suggest that the SNIa peak luminosity is fainter in metal poor galaxies, with important implications for SNIa estimates of qo as well as Ho.
We measure the Tully-Fisher relations of 14 lenticular galaxies (S0s) and 14 spirals. We use two measures of rotational velocity. One is derived directly from observed spatially-resolved stellar kinematics and the other from the circular velocities o f mass models that include a dark halo and whose parameters are constrained by detailed kinematic modelling. Contrary to the naive expectations of theories of S0 formation, we find no significant difference between the Tully-Fisher relations of the two samples when plotted as functions of both brightness and stellar mass.
We study the HI K-band Tully-Fisher relation and the baryonic Tully-Fisher relation for a sample of 16 early-type galaxies, taken from the ATLAS3D sample, which all have very regular HI disks extending well beyond the optical body (> 5 R_eff). We use the kinematics of these disks to estimate the circular velocity at large radii for these galaxies. We find that the Tully-Fisher relation for our early-type galaxies is offset by about 0.5-0.7 magnitudes from the relation for spiral galaxies. The residuals with respect to the spiral Tully-Fisher relation correlate with estimates of the stellar mass-to-light ratio, suggesting that the offset between the relations is mainly driven by differences in stellar populations. We also observe a small offset between our Tully-Fisher relation with the relation derived for the ATLAS3D sample based on CO data representing the galaxies inner regions (< 1 R_eff). This indicates that the circular velocities at large radii are systematically 10% lower than those near 0.5-1 R_eff, in line with recent determinations of the shape of the mass profile of early-type galaxies. The baryonic Tully-Fisher relation of our sample is distinctly tighter than the standard one, in particular when using mass-to-light ratios based on dynamical models of the stellar kinematics. We find that the early-type galaxies fall on the spiral baryonic Tully-Fisher relation if one assumes M/L_K = 0.54 M_sun/L_sun for the stellar populations of the spirals, a value similar to that found by recent studies of the dynamics of spiral galaxies. Such a mass-to-light ratio for spiral galaxies would imply that their disks are 60-70% of maximal. Our analysis increases the range of galaxy morphologies for which the baryonic Tully-Fisher relations holds, strengthening previous claims that it is a more fundamental scaling relation than the classical Tully-Fisher relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا