ﻻ يوجد ملخص باللغة العربية
The availability of efficient photon sources with specific properties is important for quantum-technological applications. However, the realization of such photon sources is often challenging and hence alternative perspectives that suggest new means to enhance desired properties while suppressing detrimental processes are valuable. In this work we highlight that ab-initio simulations of coupled light-matter systems can provide such new avenues. We show for a simple model of a quantum ring that by treating light and matter on equal footing we can create and enhance novel pathways for down-conversion processes. By changing the matter subsystem as well as the photonic environment in experimentally feasible ways, we can engineer hybrid light-matter states that enhance at the same time the efficiency of the down-conversion process and the non-classicality of the created photons. Furthermore we show that this also leads to a faster down-conversion, potentially avoiding detrimental decoherence effects.
By using parametric down-conversion process with a strong signal field injection, we demonstrate coherent frequency down-conversion from a pump photon to an idler photon. Contrary to a common misunderstanding, we show that the process can be free of
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i
We consider correlation properties of twophoton polarization states in the parametric down-conversion process. In our description of polarization states we take into account the simultaneous presence of colored and white noise in the density matrix.
We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode LC resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both
The electromagnetic responses obtained from Greens function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its comp