ﻻ يوجد ملخص باللغة العربية
Deep clustering successfully provides more effective features than conventional ones and thus becomes an important technique in current unsupervised learning. However, most deep clustering methods ignore the vital positive and negative pairs introduced by data augmentation and further the significance of contrastive learning, which leads to suboptimal performance. In this paper, we present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views to obtain more discriminative features and competitive results. Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs and set one of the other augmented samples as negative sample pairs. After that, we can adopt the sample-wise contrastive loss to pull positive sample pairs together and push negative sample pairs apart. Similarly, for the class view, we build the positive and negative pairs from the sample distribution of the class. In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level. Extensive experimental results on six benchmark datasets demonstrate the superiority of our proposed model against state-of-the-art methods. Particularly in the challenging dataset Tiny-ImageNet, our method leads 5.6% against the latest comparison method. Our code will be available at url{https://github.com/ZhiyuanDang/DCDC}.
Whilst contrastive learning has achieved remarkable success in self-supervised representation learning, its potential for deep clustering remains unknown. This is due to its fundamental limitation that the instance discrimination strategy it takes is
Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its
Recently, some contrastive learning methods have been proposed to simultaneously learn representations and clustering assignments, achieving significant improvements. However, these methods do not take the category information and clustering objectiv
A good clustering algorithm can discover natural groupings in data. These groupings, if used wisely, provide a form of weak supervision for learning representations. In this work, we present Clustering-based Contrastive Learning (CCL), a new clusteri
Many state-of-the-art subspace clustering methods follow a two-step process by first constructing an affinity matrix between data points and then applying spectral clustering to this affinity. Most of the research into these methods focuses on the fi