ﻻ يوجد ملخص باللغة العربية
One of the features of the unconventional $s_pm$ state in iron-based superconductors is possibility to transform to the $s_{++}$ state with the increase of the nonmagnetic disorder. Detection of such a transition would prove the existence of the $s_pm$ state. Here we study the temperature dependence of the London magnetic penetration depth within the two-band model for the $s_pm$ and $s_{++}$ superconductors. By solving Eliashberg equations accounting for the spin-fluctuation mediated pairing and nonmagnetic impurities in the $T$-matrix approximation, we have derived a set of specific signatures of the $s_pm to s_{++}$ transition: (1) sharp change in the behavior of the penetration depth $lambda_{L}$ as a function of the impurity scattering rate at low temperatures; (2) before the transition, the slope of $Delta lambda_{L}(T) = lambda_{L}(T)-lambda_{L}(0)$ increases as a function of temperature, and after the transition this value decreases; (3) the sharp jump in the inverse square of the penetration depth as a function of the impurity scattering rate, $lambda_{L}^{-2}(Gamma_a)$, at the transition; (4) change from the single-gap behavior in the vicinity of the transition to the two-gap behavior upon increase of the impurity scattering rate in the superfluid density $rho_{s}(T)$.
We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demons
We study the temperature dependence of the magnetic penetration depth in a 3D topological superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is predicted to host a gapless 2D surface Majorana fluid. In addit
Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid $^3$He which has multiple thermodynamic phases with spin and orbital quantum numbers
The temperature dependence of the in-plane, lambda_{parallel}, and interplane, lambda_{perp}, London penetration depth was measured in the metal-free all-organic superconductor beta-ET (see title) ($T_c approx$ 5.2 K). lambda_{parallel} ~T^3 up to 0.
We study the effects of anisotropic order parameters on the temperature dependence of London penetration depth anisotropy $gamma_lambda(T)$. After MgB$_2$, this dependence is commonly attributed to distinct gaps on multi-band Fermi surfaces in superc