ترغب بنشر مسار تعليمي؟ اضغط هنا

Decisive proofs of the $s_pm to s_{++}$ transition in the temperature dependence of the magnetic penetration depth

92   0   0.0 ( 0 )
 نشر من قبل Maxim M. Korshunov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the features of the unconventional $s_pm$ state in iron-based superconductors is possibility to transform to the $s_{++}$ state with the increase of the nonmagnetic disorder. Detection of such a transition would prove the existence of the $s_pm$ state. Here we study the temperature dependence of the London magnetic penetration depth within the two-band model for the $s_pm$ and $s_{++}$ superconductors. By solving Eliashberg equations accounting for the spin-fluctuation mediated pairing and nonmagnetic impurities in the $T$-matrix approximation, we have derived a set of specific signatures of the $s_pm to s_{++}$ transition: (1) sharp change in the behavior of the penetration depth $lambda_{L}$ as a function of the impurity scattering rate at low temperatures; (2) before the transition, the slope of $Delta lambda_{L}(T) = lambda_{L}(T)-lambda_{L}(0)$ increases as a function of temperature, and after the transition this value decreases; (3) the sharp jump in the inverse square of the penetration depth as a function of the impurity scattering rate, $lambda_{L}^{-2}(Gamma_a)$, at the transition; (4) change from the single-gap behavior in the vicinity of the transition to the two-gap behavior upon increase of the impurity scattering rate in the superfluid density $rho_{s}(T)$.



قيم البحث

اقرأ أيضاً

We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demons trating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/Tc~0.4), with a rather large value of lambda (T=0)~7500A. The temperature independent behavior below ~ 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.
We study the temperature dependence of the magnetic penetration depth in a 3D topological superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is predicted to host a gapless 2D surface Majorana fluid. In addit ion to the bulk-dominated London response, we identify a $T^3$ power-law-in-temperature contribution from the surface, valid in the low-temperature limit. Our system is fully gapped in the bulk, and should be compared to bulk nodal superconductivity, which also exhibits power-law behavior. Power-law temperature dependence of the penetration depth can be one indicator of topological superconductivity.
Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid $^3$He which has multiple thermodynamic phases with spin and orbital quantum numbers $S=1$ and $L=1$, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt$_3$ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure of the order parameter. Our theoretical analysis is consistent with assignment of its symmetry $L=3$ odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.
The temperature dependence of the in-plane, lambda_{parallel}, and interplane, lambda_{perp}, London penetration depth was measured in the metal-free all-organic superconductor beta-ET (see title) ($T_c approx$ 5.2 K). lambda_{parallel} ~T^3 up to 0. 5 Tc, a power law previously observed only in materials thought to be p-wave superconductors. lambda_{perp} is larger than the sample dimensions down to the lowest temperatures (0.35 K), implying an anisotropy of lambda_{perp}/lambda_{parallel} ~ 400-800.
236 - V. G. Kogan , R. Prozorov 2020
We study the effects of anisotropic order parameters on the temperature dependence of London penetration depth anisotropy $gamma_lambda(T)$. After MgB$_2$, this dependence is commonly attributed to distinct gaps on multi-band Fermi surfaces in superc onductors. We have found, however, that the anisotropy parameter may depend on temperature also in one-band materials with anisotropic order parameters $Delta(T,k_F)$, a few such examples are given. We have found also that for different order parameters, the temperature dependence of $Delta(T)/Delta(0)$ can be represented with good accuracy by the interpolation suggested by D. Einzel, J. Low Temp. Phys, {bf 131}, 1 (2003), which simplifies considerably the evaluation of $gamma_lambda(T)$. Of particular interest is mixed order parameters of two symmetries for which $gamma_lambda(T)$ may go through a maximum for a certain relative weight of two phases. Also, for this case, we find that the ratio $Delta_{max}(0)/T_c$ may exceed substantially the weak coupling limit of 1.76. It, however, does not imply a strong coupling, rather it is due to significantly anisotropic angular variation of $Delta$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا