ﻻ يوجد ملخص باللغة العربية
Convolutional neural networks (CNNs) have become a powerful technique to decode EEG and have become the benchmark for motor imagery EEG Brain-Computer-Interface (BCI) decoding. However, it is still challenging to train CNNs on multiple subjects EEG without decreasing individual performance. This is known as the negative transfer problem, i.e. learning from dissimilar distributions causes CNNs to misrepresent each of them instead of learning a richer representation. As a result, CNNs cannot directly use multiple subjects EEG to enhance model performance directly. To address this problem, we extend deep transfer learning techniques to the EEG multi-subject training case. We propose a multi-branch deep transfer network, the Separate-Common-Separate Network (SCSN) based on splitting the networks feature extractors for individual subjects. We also explore the possibility of applying Maximum-mean discrepancy (MMD) to the SCSN (SCSN-MMD) to better align distributions of features from individual feature extractors. The proposed network is evaluated on the BCI Competition IV 2a dataset (BCICIV2a dataset) and our online recorded dataset. Results show that the proposed SCSN (81.8%, 53.2%) and SCSN-MMD (81.8%, 54.8%) outperformed the benchmark CNN (73.4%, 48.8%) on both datasets using multiple subjects. Our proposed networks show the potential to utilise larger multi-subject datasets to train an EEG decoder without being influenced by negative transfer.
We introduce here the idea of Meta-Learning for training EEG BCI decoders. Meta-Learning is a way of training machine learning systems so they learn to learn. We apply here meta-learning to a simple Deep Learning BCI architecture and compare it to tr
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limi
As a technology to read brain states from measurable brain activities, brain decoding are widely applied in industries and medical sciences. In spite of high demands in these applications for a universal decoder that can be applied to all individuals
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop MI-based BCI system, after electr
We solve the fNIRS left/right hand force decoding problem using a data-driven approach by using a convolutional neural network architecture, the HemCNN. We test HemCNNs decoding capabilities to decode in a streaming way the hand, left or right, from