ﻻ يوجد ملخص باللغة العربية
We describe a dataset expressing and proving properties of graph trails, using Isabelle/HOL. We formalize the reasoning about strictly increasing and decreasing trails, using weights over edges, and prove lower bounds over the length of trails in weighted graphs. We do so by extending the graph theory library of Isabelle/HOL with an algorithm computing the length of a longest strictly decreasing graph trail starting from a vertex for a given weight distribution, and prove that any decreasing trail is also an increasing one. This preprint has been accepted for publication at CICM 2020.
The International Mathematical Olympiad (IMO) is perhaps the most celebrated mental competition in the world and as such is among the greatest grand challenges for Artificial Intelligence (AI). The IMO Grand Challenge, recently formulated, requires t
In this article we present an ongoing effort to formalise quantum algorithms and results in quantum information theory using the proof assistant Isabelle/HOL. Formal methods being critical for the safety and security of algorithms and protocols, we f
Special Relativity is a cornerstone of modern physical theory. While a standard coordinate model is well-known and widely taught today, several alternative systems of axioms exist. This paper reports on the formalisation of one such system which is c
Proof assistants are important tools for teaching logic. We support this claim by discussing three formalizations in Isabelle/HOL used in a recent course on automated reasoning. The first is a formalization of System W (a system of classical proposit
The libraries of proof assistants like Isabelle, Coq, HOL are notoriously difficult to interpret by external tools: de facto, only the prover itself can parse and process them adequately. In the case of Isabelle, an export of the library into a FAIR