ﻻ يوجد ملخص باللغة العربية
Relation extraction is a type of information extraction task that recognizes semantic relationships between entities in a sentence. Many previous studies have focused on extracting only one semantic relation between two entities in a single sentence. However, multiple entities in a sentence are associated through various relations. To address this issue, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations using a forward object decoder. Then, it finds 1-to-n subject-object relations using a backward subject decoder. Our experiments confirmed that the proposed model outperformed previous models, with an F1-score of 80.8% for the ACE-2005 corpus and an F1-score of 78.3% for the NYT corpus.
Sentence ordering is one of important tasks in NLP. Previous works mainly focused on improving its performance by using pair-wise strategy. However, it is nontrivial for pair-wise models to incorporate the contextual sentence information. In addition
Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a
Remarkable success has been achieved in the last few years on some limited machine reading comprehension (MRC) tasks. However, it is still difficult to interpret the predictions of existing MRC models. In this paper, we focus on extracting evidence s
Emotion-cause pair extraction (ECPE), an emerging task in sentiment analysis, aims at extracting pairs of emotions and their corresponding causes in documents. This is a more challenging problem than emotion cause extraction (ECE), since it requires
The development of natural language processing (NLP) in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension t