ﻻ يوجد ملخص باللغة العربية
To the best of our knowledge, there are no specific calculations of gravity-darkening exponents for white dwarfs in the literature. On the other hand, the number of known eclipsing binaries whose components are tidally and/or rotationally distorted white dwarfs is increasing year on year. Our main objective is to present the first theoretical approaches to the problem of the distribution of temperatures on the surfaces of compact stars distorted by rotation and/or tides in order to compare with relevant observational data. We find discrepancies between the gravity-darkening exponents calculated with our methods and the predictions of the von Zeipel theorem, particularly in the cases of cold white dwarfs; although the discrepancy also applies to higher effective temperatures under determined physical conditions. We find physical connections between the gravity-darkening exponents calculated using our modified method of triangles strategy with the convective efficiency (defined here as the ratio of the convective to the total flux). A connection between the entropy and the gravity-darkening coefficients is also found: variations of the former cause changes in the way the temperature is distributed on distorted stellar surfaces. On the other hand, we have generalised the von Zeipel theorem for the case of hot white dwarfs. Such a generalisation allows us to predict that, under certain circumstances, the value of the gravity-darkening exponent may be smaller than 1.0, even in the case of high effective temperatures.
We identify two new tidally distorted white dwarfs (WDs), SDSS J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both stars are extremely low mass (ELM, < 0.2 Msun) WDs in short-period, detached binary systems. High-speed photo
The main objective of the present work is to extend these investigations by computing the gravity and limb-darkening coefficients for white dwarf atmosphere models with hydrogen, helium, or mixed compositions (types DA, DB, and DBA). We computed gr
We computed Doppler beaming factors for DA, DB, and DBA white dwarf models, as well as for main sequence and giant stars covering the transmission curves of the Sloan, UBVRI, HiPERCAM, Kepler, TESS, and Gaia photometric systems. The calculations of t
We present the discovery of an unusual, tidally-distorted extremely low mass white dwarf (WD) with nearly solar metallicity. Radial velocity measurements confirm that this is a compact binary with an orbital period of 2.6975 hrs and a velocity semi-a
Observational evidence of white dwarf planetary systems is dominated by the remains of exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However, exo-planets in these systems play crucial roles as perturbing agents, and