ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mathematical Framework for Causally Structured Dilations and its Relation to Quantum Self-Testing

61   0   0.0 ( 0 )
 نشر من قبل Nicholas Houghton-Larsen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The motivation for this thesis was to recast quantum self-testing [MY98,MY04] in operational terms. The result is a category-theoretic framework for discussing the following general question: How do different implementations of the same input-output process compare to each other? In the proposed framework, an input-output process is modelled by a causally structured channel in some fixed theory, and its implementations are modelled by causally structured dilations formalising hidden side-computations. These dilations compare through a pre-order formalising relative strength of side-computations. Chapter 1 reviews a mathematical model for physical theories as semicartesian symmetric monoidal categories. Many concrete examples are discussed, in particular quantum and classical information theory. The key feature is that the model facilitates the notion of dilations. Chapter 2 is devoted to the study of dilations. It introduces a handful of simple yet potent axioms about dilations, one of which (resembling the Purification Postulate [CDP10]) entails a duality theorem encompassing a large number of classic no-go results for quantum theory. Chapter 3 considers metric structure on physical theories, introducing in particular a new metric for quantum channels, the purified diamond distance, which generalises the purified distance [TCR10,Tom12] and relates to the Bures distance [KSW08a]. Chapter 4 presents a category-theoretic formalism for causality in terms of (constructible) causal channels and contractions. It simplifies aspects of the formalisms [CDP09,KU17] and relates to traces in monoidal categories [JSV96]. The formalism allows for the definition of causal dilations and the establishment of a non-trivial theory of such dilations. Chapter 5 realises quantum self-testing from the perspective of chapter 4, thus pointing towards the first known operational foundation for self-testing.



قيم البحث

اقرأ أيضاً

96 - Mathieu Huot , Sam Staton 2019
We argue that notions in quantum theory should have universal properties in the sense of category theory. We consider the completely positive trace preserving (CPTP) maps, the basic notion of quantum channel. Physically, quantum channels are derived from pure quantum theory by allowing discarding. We phrase this in category theoretic terms by showing that the category of CPTP maps is the universal monoidal category with a terminal unit that has a functor from the category of isometries. In other words, the CPTP maps are the affine reflection of the isometries.
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely, with minimal assumptions about the underlying quantum system. It is based on the observation that some extremal points in the set of qu antum correlations can only be achieved, up to isometries, with specific states and measurements. Here, we present a new approach for quantum self-testing in Bell non-locality scenarios, motivated by the following observation: the quantum maximum of a given Bell inequality is, in general, difficult to characterize. However, it is strictly contained in an easy-to-characterize set: the emph{theta body} of a vertex-weighted induced subgraph $(G,w)$ of the graph in which vertices represent the events and edges join mutually exclusive events. This implies that, for the cases where the quantum maximum and the maximum within the theta body (known as the Lovasz theta number) of $(G,w)$ coincide, self-testing can be demonstrated by just proving self-testability with the theta body of $G$. This graph-theoretic framework allows us to (i) recover the self-testability of several quantum correlations that are known to permit self-testing (like those violating the Clauser-Horne-Shimony-Holt (CHSH) and three-party Mermin Bell inequalities for projective measurements of arbitrary rank, and chained Bell inequalities for rank-one projective measurements), (ii) prove the self-testability of quantum correlations that were not known using existing self-testing techniques (e.g., those violating the Abner Shimony Bell inequality for rank-one projective measurements). Additionally, the analysis of the chained Bell inequalities gives us a closed-form expression of the Lovasz theta number for a family of well-studied graphs known as the Mobius ladders, which might be of independent interest in the community of discrete mathematics.
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party (say, Alice) contains a pair of anti-commuting qubit observables. As a consequence, the other party (say, Bob) automatically verifies his set of states remotely steered by Alice, namely the assemblage, is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called robust self-testing of steerable quantum assemblages. In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled states proposed by Bowles et al. [Phys. Rev. Lett. 121, 180503 (2018)], and 2) that it can be used to verify all non-entanglement-breaking channels with fewer assumptions compared with the work of Rosset et al. [Phys. Rev. X 8, 021033 (2018)].
Observed quantum correlations are known to determine in certain cases the underlying quantum state and measurements. This phenomenon is known as (quantum) self-testing. Self-testing constitutes a significant research area with practical and theoret ical ramifications for quantum information theory. But since its conception two decades ago by Mayers and Yao, the common way to rigorously formulate self-testing has been in terms of operator-algebraic identities, and this formulation lacks an operational interpretation. In particular, it is unclear how to formulate self-testing in other physical theories, in formulations of quantum theory not referring to operator-algebra, or in scenarios causally different from the standard one. In this paper, we explain how to understand quantum self-testing operationally, in terms of causally structured dilations of the input-output channel encoding the correlations. These dilations model side-information which leaks to an environment according to a specific schedule, and we show how self-testing concerns the relative strength between such scheduled leaks of information. As such, the title of our paper has double meaning: we recast conventional quantum self-testing in terms of information-leaks to an environment --- and this realises quantum self-testing as a special case within the surroundings of a general operational framework. Our new approach to quantum self-testing not only supplies an operational understanding apt for various generalisations, but also resolves some unexplained aspects of the existing definition, naturally suggests a distance measure suitable for robust self-testing, and points towards self-testing as a modular concept in a larger, cryptographic perspective.
The network structure offers in principle the possibility for novel forms of quantum nonlocal correlations, that are proper to networks and cannot be traced back to standard quantum Bell nonlocality. Here we define a notion of genuine network quantum nonlocality. Our approach is operational and views standard quantum nonlocality as a resource for producing correlations in networks. We show several examples of correlations that are genuine network nonlocal, considering the so-called bilocality network of entanglement swapping. In particular, we present an example of quantum self-testing which relies on the network structure; the considered correlations are non-bilocal, but are local according to the usual definition of Bell locality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا