ﻻ يوجد ملخص باللغة العربية
Water (H$_{2}$O), in all forms, is an important constituent in planetary bodies, controlling habitability and influencing geological activity. Under conditions found in the interior of many planets, as the pressure increases, the H-bonds in water gradually weaken and are replaced by ionic bonds. Recent experimental measurements of the water equation of state (EOS) showed both a new phase of H-bonded water ice, ice-VII$_t$, and a relatively low transition pressure just above 30 GPa to ionic bonded ice-X, which has a bulk modulus 2.5 times larger. The higher bulk modulus of ice-X produces larger planets for a given mass, thereby either reducing the atmospheric contribution to the volume of many exoplanets or limiting their water content. We investigate the impact of the new EOS measurements on the planetary mass-radius relation and interior structure for water-rich planets. We find that the change in the planet mass-radius relation caused by the systematic differences between previous and new experimental EOS measurements are comparable to the observational uncertainties in some planet sizes -- an issue that will become more important as observations continue to improve.
Multiple planet systems provide an ideal laboratory for probing exoplanet composition, formation history and potential habitability. For the TRAPPIST-1 planets, the planetary radii are well established from transits (Gillon et al., 2016, Gillon et al
Ultracool dwarfs (UCD; $T_{rm eff}<sim3000~$K) cool to settle on the main sequence after $sim$1 Gyr. For brown dwarfs, this cooling never stops. Their habitable zone (HZ) thus sweeps inward at least during the first Gyr of their lives. Assuming they
As a first step toward a multi-phase equation of state for dense water, we develop a temperature-dependent equation of state for dense water covering the liquid and plasma regimes and extending to the super-ionic and gas regimes. This equation of sta
Earth has a unique surface character among Solar System worlds. Not only does it harbor liquid water, but also large continents. An exoplanet with a similar appearance would remind us of home, but it is not obvious whether such a planet is more likel
Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending o