ﻻ يوجد ملخص باللغة العربية
Young neutron stars (NSs) have magnetic fields $B$ in the range $10^{12}-10^{15}$ G, believed to be generated by dynamo action at birth. We argue that such a dynamo is actually too inefficient to explain the strongest of these fields. Dynamo action in the mature star is also unlikely. Instead we propose a promising new precession-driven dynamo and examine its basic properties, as well as arguing for a revised mean-field approach to NS dynamos. The precession-driven dynamo could also play a role in field generation in main-sequence stars.
Neutron stars are natural physical laboratories allowing us to study a plethora of phenomena in extreme conditions. In particular, these compact objects can have very strong magnetic fields with non-trivial origin and evolution. In many respects its
We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their c
We explore the thermal and magnetic-field structure of a late-stage proto-neutron star. We find the dominant contribution to the entropy in different regions of the star, from which we build a simplified equation of state for the hot neutron star. Wi
The configuration of the magnetic field in the interior of a neutron star is mostly unknown from observations. Theoretical models of the interior magnetic field geometry tend to be oversimplified to avoid mathematical complexity and tend to be based
We present the first study on the amplification of magnetic fields by the turbulent dynamo in the highly subsonic regime, with Mach numbers ranging from $10^{-3}$ to $0.4$. We find that for the lower Mach numbers the saturation efficiency of the dyna