ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultralocality and Slow Contraction

282   0   0.0 ( 0 )
 نشر من قبل Anna Ijjas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the detailed process by which slow contraction smooths and flattens the universe using an improved numerical relativity code that accepts initial conditions with non-perturbative deviations from homogeneity and isotropy along two independent spatial directions. Contrary to common descriptions of the early universe, we find that the geometry first rapidly converges to an inhomogeneous, spatially-curved and anisotropic ultralocal state in which all spatial gradient contributions to the equations of motion decrease as an exponential in time to negligible values. This is followed by a second stage in which the geometry converges to a homogeneous, spatially flat and isotropic spacetime. In particular, the decay appears to follow the same history whether the entire spacetime or only parts of it are smoothed by the end of slow contraction.



قيم البحث

اقرأ أيضاً

Performing a fully non-perturbative analysis using the tools of numerical general relativity, we demonstrate that a period of slow contraction is a `supersmoothing cosmological phase that homogenizes, isotropizes and flattens the universe both classi cally and quantum mechanically and can do so far more robustly and rapidly than had been realized in earlier studies.
We present numerical relativity simulations of cosmological scenarios in which the universe is smoothed and flattened by undergoing a phase of slow contraction and test their sensitivity to a wide range of initial conditions. Our numerical scheme ena bles the variation of all freely specifiable physical quantities that characterize the initial spatial hypersurface, such as the initial shear and spatial curvature contributions as well as the initial field and velocity distributions of the scalar that drives the cosmological evolution. In particular, we include initial conditions that are far outside the perturbative regime of the well-known attractor scaling solution. We complement our numerical results by analytically performing a complete dynamical systems analysis and show that the two approaches yield consistent results.
We demonstrate that the rapidity and robustness of slow contraction in homogenizing and flattening the universe found in simulations in which the initial conditions were restricted to non-perturbative variations described by a single fourier mode alo ng only a single spatial direction are in general enhanced if the initial variations are along two spatial directions, include multiple modes, and thereby have reduced symmetry. Particularly significant are shear effects that only become possible when variations are allowed along two or more spatial dimensions. Based on the numerical results, we conjecture that the counterintuitive enhancement occurs because more degrees of freedom are activated which drive spacetime away from an unstable Kasner fixed point and towards the stable Friedmann-Robertson-Walker fixed point.
There have been thousands of cosmological models for our early universe proposed in the literature, and many of them claimed to be able to give rise to scale-invariant power spectrum as was favored by the observational data. It is thus interesting to think about whether there are some relations among them, e.g., the duality relation. In this paper, we investigate duality relations between cosmological models in framework of general relativity (GR) , not only with varying slow-roll parameter $epsilon$, but also with sound speed $c_s$, which can then be understood as adiabatic duality. Several duality relationships are formulated analytically and verified numerically. We show that models with varying $epsilon$ and constant $c_s$ can be dual in scalar spectral index, but not tensor one. On the other hand, allowing both $epsilon$ and $c_s$ to vary can make models dual in both scalar and tensor spectral indices.
After giving a pedagogical review we clarify that the stochastic approach to inflation is generically reliable only at zeroth order in the (geometrical) slow-roll parameter $epsilon_1$ if and only if $epsilon_2^2ll 6/epsilon_1$, with the notable exce ption of slow-roll. This is due to the failure of the stochastic $Delta N$ formalism in its standard formulation. However, by keeping the formalism in its regime of validity, we showed that, in ultra-slow-roll, the stochastic approach to inflation reproduces the power spectrum calculated from the linear theory approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا