ﻻ يوجد ملخص باللغة العربية
Harmonic oscillator chains connecting two harmonic reservoirs at different constant temperatures cannot act as thermal diodes, irrespective of structural asymmetry. However, here we prove that perfectly harmonic junctions can rectify heat once the reservoirs (described by white Langevin noise) are placed under temperature gradients, which are asymmetric at the two sides, an effect that we term temperature-gradient harmonic oscillator diodes. This nonlinear diode effect results from the additional constraint -- the imposed thermal gradient at the boundaries. We demonstrate the rectification behavior based on the exact analytical formulation of steady state heat transport in harmonic systems coupled to Langevin baths, which can describe quantum and classical transport, both regimes realizing the diode effect under the involved boundary conditions. Our study shows that asymmetric harmonic systems, such as room-temperature hydrocarbon molecules with varying side groups and end groups, or a linear lattice of trapped ions may rectify heat by going beyond simple boundary conditions.
We study heat conduction mediated by longitudinal phonons in one dimensional disordered harmonic chains. Using scaling properties of the phonon density of states and localization in disordered systems, we find non-trivial scaling of the thermal condu
We study the fundamental limitations of cooling to absolute zero for a qubit, interacting with a single mode of the electromagnetic field. Our results show that the dynamical Casimir effect, which is unavoidable in any finite-time thermodynamic cycle
We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the influences of local environments of various nature, stressing the effects that the specific nature of the environment has on the phenomenology
Theoretical treatments of periodically-driven quantum thermal machines (PD-QTMs) are largely focused on the limit-cycle stage of operation characterized by a periodic state of the system. Yet, this regime is not immediately accessible for experimenta
We propose a mechanism to substantially rectify radiative heat flow by matching thin films of metal-to-insulator transition materials and polar dielectrics in the electromagnetic near field. By leveraging the distinct scaling behaviors of the local d