ﻻ يوجد ملخص باللغة العربية
Higher order topological insulators (HOTIs) are a novel form of insulating quantum matter, which are characterized by having gapped boundaries that are separated by gapless corner or hinge states. Recently, it has been proposed that the essential features of a large class of HOTIs are captured by topological multipolar response theories. In this work, we show that these multipolar responses can be realized in interacting lattice models, which conserve both charge and dipole. In this work we study several models in both the strongly interacting and mean-field limits. In $2$D we consider a ring-exchange model which exhibits a quadrupole response, and can be tuned to a $C_4$ symmetric higher order topological phase with half-integer quadrupole moment, as well as half-integer corner charges. We then extend this model to develop an analytic description of adiabatic dipole pumping in an interacting lattice model. The quadrupole moment changes during this pumping process, and if the process is periodic, we show the total change in the quadrupole moment is quantized as an integer. We also consider two interacting $3$D lattice models with chiral hinge modes. We show that the chiral hinge modes are heralds of a recently proposed dipolar Chern-Simons response, which is related to the quadrupole response by dimensional reduction. Interestingly, we find that in the mean field limit, both the $2$D and $3$D interacting models we consider here are equivalent to known models of non-interacting HOTIs (or boundary obstruct
Two-dimensional higher-order topological insulators can display a number of exotic phenomena such as half-integer charges localized at corners or disclination defects. In this paper, we analyze these phenomena, focusing on the paradigmatic example of
We derive an effective field theory model for magnetic topological insulators and predict that a magnetic electronic gap persists on the surface for temperatures above the ordering temperature of the bulk. Our analysis also applies to interfaces of h
The standard boundary state of a topological insulator in 3+1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our
We show that in the presence of $n$-fold rotation symmetries and time-reversal symmetry, the number of fermion flavors must be a multiple of $2n$ ($n=2,3,4,6$) on two-dimensional lattices, a stronger version of the well-known fermion doubling theorem
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi