ﻻ يوجد ملخص باللغة العربية
Hardware/Software (HW/SW) co-designed processors provide a promising solution to the power and complexity problems of the modern microprocessors by keeping their hardware simple. Moreover, they employ several runtime optimizations to improve the performance. One of the most potent optimizations, vectorization, has been utilized by modern microprocessors, to exploit the data level parallelism through SIMD accelerators. Due to their hardware simplicity, these accelerators have evolved in terms of width from 64-bit vectors in Intel MMX to 512-bit wide vector units in Intel Xeon Phi and AVX-512. Although SIMD accelerators are simple in terms of hardware design, code generation for them has always been a challenge. Moreover, increasing vector lengths with each new generation add to this complexity. This paper explores the scalability of SIMD accelerators from the code generation point of view. We discover that the SIMD accelerators remain underutilized at higher vector lengths mainly due to: a) reduced dynamic instruction stream coverage for vectorization and b) increase in permutations. Both of these factors can be attributed to the rigidness of the SIMD architecture. We propose a novel SIMD architecture that possesses the flexibility needed to support higher vector lengths. Furthermore, we propose Variable Length Vectorization and Selective Writing in a HW/SW co-designed environment to transparently target the flexibility of the proposed architecture. We evaluate our proposals using a set of SPECFP2006 and Physicsbench applications. Our experimental results show an average dynamic instruction reduction of 31% and 40% and an average speed up of 13% and 10% for SPECFP2006 and Physicsbench respectively, for 512-bit vector length, over the scalar baseline code.
To meet the extreme compute demands for deep learning across commercial and scientific applications, dataflow accelerators are becoming increasingly popular. While these domain-specific accelerators are not fully programmable like CPUs and GPUs, they
Many FPGAs vendors have recently included embedded processors in their devices, like Xilinx with ARM-Cortex A cores, together with programmable logic cells. These devices are known as Programmable System on Chip (PSoC). Their ARM cores (embedded in t
Basic Linear Algebra Subprograms (BLAS) play key role in high performance and scientific computing applications. Experimentally, yesteryear multicore and General Purpose Graphics Processing Units (GPGPUs) are capable of achieving up to 15 to 57% of t
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable the full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations.
Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencer