ترغب بنشر مسار تعليمي؟ اضغط هنا

Markov chain Monte Carlo analyses of the flux ratios of B, Be and Li with the DRAGON2 code

53   0   0.0 ( 0 )
 نشر من قبل Pedro de la Torre Luque
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent cosmic-ray measurements are challenging our models of propagation in the Galaxy. A good characterization of the secondary cosmic rays (B, Be, Li and sub-iron species) is crucial to constrain these models and exploit the precision of modern CR experiments. In this work, a Markov chain Monte Carlo analysis has been implemented to fit the experimental flux ratios between B, Be and Li and their flux ratios to the primary nuclei C and O. We have fitted the data using two different parametrizations for the spallation cross sections. The uncertainties in the evaluation of the spectra of these secondary cosmic rays, due to spallation cross sections, have been considered by introducing scale factors as nuisance parameters. We have also tested two different formulations for the diffusion coefficient, which differ in the origin of the high energy hardening of cosmic rays. Additionally, two different approaches are used to scale the cross sections, one based on a combined analysis of all the species (combined analysis) and the other reproducing the high energy spectra of the secondary-to-secondary flux ratios of Be/B, Li/B, Li/Be (scaled analysis). This allows us to make a better comparison between the propagation parameters inferred from the cross sections parametrizations tested in this work. This novel analysis has been successfully implemented using the numerical code DRAGON2 to reproduce the cosmic-ray nuclei data up to $Z=14$ from the AMS-02 experiment. It is found that the ratios of Li favor a harder spectral index of the diffusion coefficient, but compatible with the other ratios inside the observed $2sigma$ uncertainties. In addition, it is shown that, including these scale factors, the secondary-to-primary flux ratios can be simultaneously reproduced.



قيم البحث

اقرأ أيضاً

An important task in machine learning and statistics is the approximation of a probability measure by an empirical measure supported on a discrete point set. Stein Points are a class of algorithms for this task, which proceed by sequentially minimisi ng a Stein discrepancy between the empirical measure and the target and, hence, require the solution of a non-convex optimisation problem to obtain each new point. This paper removes the need to solve this optimisation problem by, instead, selecting each new point based on a Markov chain sample path. This significantly reduces the computational cost of Stein Points and leads to a suite of algorithms that are straightforward to implement. The new algorithms are illustrated on a set of challenging Bayesian inference problems, and rigorous theoretical guarantees of consistency are established.
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an ext ended space. We present empirical results that show significant improvements in mixing rates relative to both non-interacting PMCMC samplers, and a single PMCMC sampler with an equivalent memory and computational budget. An additional advantage of the iPMCMC method is that it is suitable for distributed and multi-core architectures.
A novel class of non-reversible Markov chain Monte Carlo schemes relying on continuous-time piecewise-deterministic Markov Processes has recently emerged. In these algorithms, the state of the Markov process evolves according to a deterministic dynam ics which is modified using a Markov transition kernel at random event times. These methods enjoy remarkable features including the ability to update only a subset of the state components while other components implicitly keep evolving and the ability to use an unbiased estimate of the gradient of the log-target while preserving the target as invariant distribution. However, they also suffer from important limitations. The deterministic dynamics used so far do not exploit the structure of the target. Moreover, exact simulation of the event times is feasible for an important yet restricted class of problems and, even when it is, it is application specific. This limits the applicability of these techniques and prevents the development of a generic software implementation of them. We introduce novel MCMC methods addressing these shortcomings. In particular, we introduce novel continuous-time algorithms relying on exact Hamiltonian flows and novel non-reversible discrete-time algorithms which can exploit complex dynamics such as approximate Hamiltonian dynamics arising from symplectic integrators while preserving the attractive features of continuous-time algorithms. We demonstrate the performance of these schemes on a variety of applications.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is availab le, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
We introduce an ensemble Markov chain Monte Carlo approach to sampling from a probability density with known likelihood. This method upgrades an underlying Markov chain by allowing an ensemble of such chains to interact via a process in which one cha ins state is cloned as anothers is deleted. This effective teleportation of states can overcome issues of metastability in the underlying chain, as the scheme enjoys rapid mixing once the modes of the target density have been populated. We derive a mean-field limit for the evolution of the ensemble. We analyze the global and local convergence of this mean-field limit, showing asymptotic convergence independent of the spectral gap of the underlying Markov chain, and moreover we interpret the limiting evolution as a gradient flow. We explain how interaction can be applied selectively to a subset of state variables in order to maintain advantage on very high-dimensional problems. Finally we present the application of our methodology to Bayesian hyperparameter estimation for Gaussian process regression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا