In the late 19th century, Swedish mathematician Lars Edvard Phragm{e}n proposed a load-balancing approach for selecting committees based on approval ballots. We consider three committee voting rules resulting from this approach: two optimization variants -- one minimizing the maximal load and one minimizing the variance of loads -- and a sequential variant. We study Phragm{e}ns methods from an axiomatic point of view, focusing on properties capturing proportional representation. We show that the sequential variant satisfies proportional justified representation, which is a rare property for committee monotonic methods. Moreover, we show that the optimization variants satisfy perfect representation. We also analyze the computational complexity of Phragm{e}ns methods and provide mixed-integer programming based algorithms for computing them.