ﻻ يوجد ملخص باللغة العربية
It is a strong prerequisite to access source data freely in many existing unsupervised domain adaptation approaches. However, source data is agnostic in many practical scenarios due to the constraints of expensive data transmission and data privacy protection. Usually, the given source domain pre-trained model is expected to optimize with only unlabeled target data, which is termed as source-free unsupervised domain adaptation. In this paper, we solve this problem from the perspective of noisy label learning, since the given pre-trained model can pre-generate noisy label for unlabeled target data via directly network inference. Under this problem modeling, incorporating self-supervised learning, we propose a novel Self-Supervised Noisy Label Learning method, which can effectively fine-tune the pre-trained model with pre-generated label as well as selfgenerated label on the fly. Extensive experiments had been conducted to validate its effectiveness. Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin. Code will be released.
The majority of existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training. Such an assumption may not hold in practice, as source data is often inaccessible (e.g., due
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works
Existing unsupervised domain adaptation methods aim to transfer knowledge from a label-rich source domain to an unlabeled target domain. However, obtaining labels for some source domains may be very expensive, making complete labeling as used in prio
Most modern approaches for domain adaptive semantic segmentation rely on continued access to source data during adaptation, which may be infeasible due to computational or privacy constraints. We focus on source-free domain adaptation for semantic se
Domain Adaptation has been widely used to deal with the distribution shift in vision, language, multimedia etc. Most domain adaptation methods learn domain-invariant features with data from both domains available. However, such a strategy might be in