ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian Spatial Modeling Approach to Mortality Forecasting

97   0   0.0 ( 0 )
 نشر من قبل Zhen Liu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper extends Bayesian mortality projection models for multiple populations considering the stochastic structure and the effect of spatial autocorrelation among the observations. We explain high levels of overdispersion according to adjacent locations based on the conditional autoregressive model. In an empirical study, we compare different hierarchical projection models for the analysis of geographical diversity in mortality between the Japanese counties in multiple years, according to age. By a Markov chain Monte Carlo (MCMC) computation, results have demonstrated the flexibility and predictive performance of our proposed model.



قيم البحث

اقرأ أيضاً

The evolution of communities in dynamic (time-varying) network data is a prominent topic of interest. A popular approach to understanding these dynamic networks is to embed the dyadic relations into a latent metric space. While methods for clustering with this approach exist for dynamic networks, they all assume a static community structure. This paper presents a Bayesian nonparametric model for dynamic networks that can model networks with evolving community structures. Our model extends existing latent space approaches by explicitly modeling the additions, deletions, splits, and mergers of groups with a hierarchical Dirichlet process hidden Markov model. Our proposed approach, the hierarchical Dirichlet process latent position clustering model (HDP-LPCM), incorporates transitivity, models both individual and group level aspects of the data, and avoids the computationally expensive selection of the number of groups required by most popular methods. We provide a Markov chain Monte Carlo estimation algorithm and apply our method to synthetic and real-world networks to demonstrate its performance.
We address the problem of forecasting high-dimensional functional time series through a two-fold dimension reduction procedure. The difficulty of forecasting high-dimensional functional time series lies in the curse of dimensionality. In this paper, we propose a novel method to solve this problem. Dynamic functional principal component analysis is first applied to reduce each functional time series to a vector. We then use the factor model as a further dimension reduction technique so that only a small number of latent factors are preserved. Classic time series models can be used to forecast the factors and conditional forecasts of the functions can be constructed. Asymptotic properties of the approximated functions are established, including both estimation error and forecast error. The proposed method is easy to implement especially when the dimension of the functional time series is large. We show the superiority of our approach by both simulation studies and an application to Japanese age-specific mortality rates.
This paper proposes a two-fold factor model for high-dimensional functional time series (HDFTS), which enables the modeling and forecasting of multi-population mortality under the functional data framework. The proposed model first decomposes the HDF TS into functional time series with lower dimensions (common feature) and a system of basis functions specific to different cross-sections (heterogeneity). Then the lower-dimensional common functional time series are further reduced into low-dimensional scalar factor matrices. The dimensionally reduced factor matrices can reasonably convey useful information in the original HDFTS. All the temporal dynamics contained in the original HDFTS are extracted to facilitate forecasting. The proposed model can be regarded as a general case of several existing functional factor models. Through a Monte Carlo simulation, we demonstrate the performance of the proposed method in model fitting. In an empirical study of the Japanese subnational age-specific mortality rates, we show that the proposed model produces more accurate point and interval forecasts in modeling multi-population mortality than those existing functional factor models. The financial impact of the improvements in forecasts is demonstrated through comparisons in life annuity pricing practices.
In relational event networks, the tendency for actors to interact with each other depends greatly on the past interactions between the actors in a social network. Both the quantity of past interactions and the time that elapsed since the past interac tions occurred affect the actors decision-making to interact with other actors in the network. Recently occurred events generally have a stronger influence on current interaction behavior than past events that occurred a long time ago--a phenomenon known as memory decay. Previous studies either predefined a short-run and long-run memory or fixed a parametric exponential memory using a predefined half-life period. In real-life relational event networks however it is generally unknown how the memory of actors about the past events fades as time goes by. For this reason it is not recommendable to fix this in an ad hoc manner, but instead we should learn the shape of memory decay from the observed data. In this paper, a novel semi-parametric approach based on Bayesian Model Averaging is proposed for learning the shape of the memory decay without requiring any parametric assumptions. The method is applied to relational event history data among socio-political actors in India.
Several methods have been proposed in the spatial statistics literature for the analysis of big data sets in continuous domains. However, new methods for analyzing high-dimensional areal data are still scarce. Here, we propose a scalable Bayesian mod eling approach for smoothing mortality (or incidence) risks in high-dimensional data, that is, when the number of small areas is very large. The method is implemented in the R add-on package bigDM. Model fitting and inference is based on the idea of divide and conquer and use integrated nested Laplace approximations and numerical integration. We analyze the proposals empirical performance in a comprehensive simulation study that consider two model-free settings. Finally, the methodology is applied to analyze male colorectal cancer mortality in Spanish municipalities showing its benefits with regard to the standard approach in terms of goodness of fit and computational time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا