ترغب بنشر مسار تعليمي؟ اضغط هنا

The Homotopy Class of twisted $L_infty$-morphisms

188   0   0.0 ( 0 )
 نشر من قبل Jonas Schnitzer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The global formality of Dolgushev depends on the choice of a torsion-free covariant derivative. We prove that the globalized formalities with respect to two different covariant derivatives are homotopic. More explicitly, we derive the statement by proving a more general homotopy equivalence between $L_infty$-morphisms that are twisted with gauge equivalent Maurer-Cartan elements.



قيم البحث

اقرأ أيضاً

We describe $L_infty$-algebras governing homotopy relative Rota-Baxter Lie algebras and triangular $L_infty$-bialgebras, and establish a map between them. Our formulas are based on a functorial approach to Voronovs higher derived brackets construction which is of independent interest.
In this paper we propose a reduction scheme for multivector fields phrased in terms of $L_infty$-morphisms. Using well-know geometric properties of the reduced manifolds we perform a Taylor expansion of multivector fields, which allows us to built up a suitable deformation retract of DGLAs. We first obtained an explicit formula for the $L_infty$-Projection and -Inclusion of generic DGLA retracts. We then applied this formula to the deformation retract that we constructed in the case of multivector fields on reduced manifolds. This allows us to obtain the desired reduction $L_infty$-morphism. Finally, we perfom a comparison with other reduction procedures.
We determine the emph{$L_infty$-algebra} that controls deformations of a relative Rota-Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying LieRep pair by the dg Lie algebra controlling deformations of the relative Rota-Baxter operator. Consequently, we define the {em cohomology} of relative Rota-Baxter Lie algebras and relate it to their infinitesimal deformations. A large class of relative Rota-Baxter Lie algebras is obtained from triangular Lie bialgebras and we construct a map between the corresponding deformation complexes. Next, the notion of a emph{homotopy} relative Rota-Baxter Lie algebra is introduced. We show that a class of homotopy relative Rota-Baxter Lie algebras is intimately related to emph{pre-Lie$_infty$-algebras}.
In this short note we describe an alternative global version of the twisting procedure used by Dolgushev to prove formality theorems. This allows us to describe the maps of Fedosov resolutions, which are key factors of the formality morphisms, in ter ms of a twist of the fiberwise quasi-isomorphisms induced by the local formality theorems proved by Kontsevich and Shoikhet. The key point consists in considering $L_infty$-resolutions of the Fedosov resolutions obtained by Dolgushev and an adapted notion of Maurer-Cartan element. This allows us to perform the twisting of the quasi-isomorphism intertwining them in a global manner.
This paper first introduces the notion of a Rota-Baxter operator (of weight $1$) on a Lie group so that its differentiation gives a Rota-Baxter operator on the corresponding Lie algebra. Direct products of Lie groups, including the decompositions of Iwasawa and Langlands, carry natural Rota-Baxter operators. Formal inverse of the Rota-Baxter operator on a Lie group is precisely the crossed homomorphism on the Lie group, whose tangent map is the differential operator of weight $1$ on a Lie algebra. A factorization theorem of Rota-Baxter Lie groups is proved, deriving directly on the Lie group level, the well-known global factorization theorems of Semenov-Tian-Shansky in his study of integrable systems. As geometrization, the notions of Rota-Baxter Lie algebroids and Rota-Baxter Lie groupoids are introduced, with the former a differentiation of the latter. Further, a Rota-Baxter Lie algebroid naturally gives rise to a post-Lie algebroid, generalizing the well-known fact for Rota-Baxter Lie algebras and post-Lie algebras. It is shown that the geometrization of a Rota-Baxter Lie algebra or a Rota-Baxter Lie group can be realized by its action on a manifold. Examples and applications are provided for these new notions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا