Angle-resolved photoemission spectroscopy (ARPES) is one of the most powerful experimental techniques in condensed matter physics. Synchrotron ARPES, which uses photons with high flux and continuously tunable energy, has become particularly important. However, an excellent synchrotron ARPES system must have features such as a small beam spot, super-high energy resolution, and a user-friendly operation interface. A synchrotron beamline and an endstation (BL03U) were designed and constructed at the Shanghai Synchrotron Radiation Facility. The beam spot size at the sample position is 7.5 (V) $mu$m $times$ 67 (H) $mu$m, and the fundamental photon range is 7-165 eV; the ARPES system enables photoemission with an energy resolution of 2.67 [email protected] eV. In addition, the ARPES system of this endstation is equipped with a six-axis cryogenic sample manipulator (the lowest temperature is 7 K) and is integrated with an oxide molecular beam epitaxy system and a scanning tunneling microscope, which can provide an advanced platform for in-situ characterization of the fine electronic structure of condensed matter.
We describe a setup for performing inelastic X-ray scattering measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source (LCLS). This technique is capable of performing high-, meV-resolution measurements of d
ynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ~50 meV over a range of ~500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter, and subsequently measure ion acoustic modes.
We describe the Phase-Contrast Imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same ti
me reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 femtosecond. It was specifically designed for studies relevant to High-Energy-Density Science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.
A classic electrostatic induction machine, Cavallos multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load
current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.
The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the
laser-based ARPES technique, for the first time, we probe the surface electronic structure of the anomalous conductivity regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and identify in-gap low-lying states within a 4 meV window of the Fermi level on the (001)-surface of this material. The low-lying states are found to form electron-like Fermi surface pockets that enclose the X and the Gamma points of the surface Brillouin zone. These states disappear as temperature is raised above 15K in correspondence with the complete disappearance of the 2D conductivity channels in SmB6. While the topological nature of the in-gap metallic states cannot be ascertained without spin (spin-texture) measurements our bulk and surface measurements carried out in the transport-anomaly-temperature regime (T < 10K) are consistent with the first-principle predicted Fermi surface behavior of a topological Kondo insulator phase in this material.
In order to carry out inelastic X-ray scattering (IXS) experiment at BL15U1 beamline of Shanghai Synchrotron Radiation Facility (SSRF), the data acquisition and control system based on SPEC software has been developed. The IXS experimental method nee
ds linkage control of monochromator, silicon drift detector (SDD) and ionization chamber on continuous segment-scan mode with variable step size, and gains the data of energy, spectrum and light intensity synchronously. A method is presented for achieving this function which was not realized only by using SSCAN of Experimental Physics and Industrial Control System (EPICS). This paper shows work details including control system description, SPEC configurations for EPICS devices, macro definitions and applications in the BL15U1. An IXS experiment was executed by using the SPEC control system, its results prove that the method is feasible to perform the experiment.
Yi-Chen Yang
,Zheng-Tai Liu
,Ji-Shan Liu
.
(2021)
.
"High-resolution ARPES endstation for in-situ electronic structure investigations at SSRF"
.
Yichen Yang Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا