ﻻ يوجد ملخص باللغة العربية
Network decomposition is a central concept in the study of distributed graph algorithms. We present the first polylogarithmic-round deterministic distributed algorithm with small messages that constructs a strong-diameter network decomposition with polylogarithmic parameters. Concretely, a ($C$, $D$) strong-diameter network decomposition is a partitioning of the nodes of the graph into disjoint clusters, colored with $C$ colors, such that neighboring clusters have different colors and the subgraph induced by each cluster has a diameter at most $D$. In the weak-diameter variant, the requirement is relaxed by measuring the diameter of each cluster in the original graph, instead of the subgraph induced by the cluster. A recent breakthrough of Rozhov{n} and Ghaffari [STOC 2020] presented the first $text{poly}(log n)$-round deterministic algorithm for constructing a weak-diameter network decomposition where $C$ and $D$ are both in $text{poly}(log n)$. Their algorithm uses small $O(log n)$-bit messages. One can transform their algorithm to a strong-diameter network decomposition algorithm with similar parameters. However, that comes at the expense of requiring unbounded messages. The key remaining qualitative question in the study of network decompositions was whether one can achieve a similar result for strong-diameter network decompositions using small messages. We resolve this question by presenting a novel technique that can transform any black-box weak-diameter network decomposition algorithm to a strong-diameter one, using small messages and with only moderate loss in the parameters.
Network decomposition is a central tool in distributed graph algorithms. We present two improvements on the state of the art for network decomposition, which thus lead to improvements in the (deterministic and randomized) complexity of several well-s
We present a simple deterministic distributed algorithm that computes a $(Delta+1)$-vertex coloring in $O(log^2 Delta cdot log n)$ rounds. The algorithm can be implemented with $O(log n)$-bit messages. The algorithm can also be extended to the more g
We study graph connectivity problem in MPC model. On an undirected graph with $n$ nodes and $m$ edges, $O(log n)$ round connectivity algorithms have been known for over 35 years. However, no algorithms with better complexity bounds were known. In thi
We present improved distributed algorithms for triangle detection and its variants in the CONGEST model. We show that Triangle Detection, Counting, and Enumeration can be solved in $tilde{O}(n^{1/2})$ rounds. In contrast, the previous state-of-the-ar
Maintaining a $k$-core decomposition quickly in a dynamic graph is an important problem in many applications, including social network analytics, graph visualization, centrality measure computations, and community detection algorithms. The main chall