ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of responses of liquid xenon to low energy electron and nuclear recoils using the PandaX-II detector

153   0   0.0 ( 0 )
 نشر من قبل Binbin Yan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a systematic determination of the responses of PandaX-II, a dual phase xenon time projection chamber detector, to low energy recoils. The electron recoil (ER) and nuclear recoil (NR) responses are calibrated, respectively, with injected tritiated methane or $^{220}$Rn source, and with $^{241}$Am-Be neutron source, within an energy range from $1-25$ keV (ER) and $4-80$ keV (NR), under the two drift fields of 400 and 317 V/cm. An empirical model is used to fit the light yield and charge yield for both types of recoils. The best fit models can well describe the calibration data. The systematic uncertainties of the fitted models are obtained via statistical comparison against the data.



قيم البحث

اقرأ أيضاً

361 - Qing Lin , Jialing Fei , Fei Gao 2015
We present new measurements of the scintillation and ionization yields in liquid xenon for low energy electronic (about 3--7 keV$_{ee}$) and nuclear recoils (about 8--20 keV$_{nr}$) at different drift fields from 236 V/cm to 3.93 kV/cm, using a three -dimensional sensitive liquid xenon time projection chamber with high energy and position resolutions. Our measurement of signal responses to nuclear recoils agrees with predictions from the NEST model. However, our measured ionization (scintillation) yields for electronic recoils are consistently higher (lower) than those from the NEST model by about 5 e$^-$/keV$_{ee}$ (ph/keV$_{ee}$) at all scanned drift fields. New recombination parameters based on the Thomas-Imel box model are derived from our data. Given the lack of precise measurement of scintillation and ionization yields for low energy electronic recoils in liquid xenon previously, our new measurement provides so far the best available data covering low energy region at different drift fields for liquid xenon detectors relevant to dark matter searches.
150 - K.Ueshima , K.Abe , K.Hiraide 2011
In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7pm1.1(stat)pm1.2 0.6(sys)times10-2 at energies between 4.8 and 7.2 keVee and to 7.7pm2.8(stat)pm2.5 2.8(sys)times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4pm0.2(stat)pm0.3 0.2(sys)times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.
We report an in-situ measurement of the nuclear recoil (NR) scintillation decay time constant in liquid xenon (LXe) using the XMASS-I detector at the Kamioka underground laboratory in Japan. XMASS-I is a large single-phase LXe scintillation detector whose purpose is the direct detection of dark matter via NR which can be induced by collisions between Weakly Interacting Massive Particles (WIMPs) and a xenon nucleus. The inner detector volume contains 832 kg of LXe. $^{252}$Cf was used as an external neutron source for irradiating the detector. The scintillation decay time constant of the resulting neutron induced NR was evaluated by comparing the observed photon detection times with Monte Carlo simulations. Fits to the decay time prefer two decay time components, one for each of the Xe$_{2}^{*}$ singlet and triplet states, with $tau_{S}$ = 4.3$pm$0.6 ns taken from prior research, $tau_{T}$ was measured to be 26.9$^{+0.7}_{-1.1}$ ns with a singlet state fraction F$_{S}$ of 0.252$^{+0.027}_{-0.019}$.We also evaluated the performance of pulse shape discrimination between NR and electron recoil (ER) with the aim of reducing the electromagnetic background in WIMP searches. For a 50% NR acceptance, the ER acceptance was 13.7${pm}$1.0% and 4.1${pm}$0.7% in the energy ranges of 5--10 keV$_{rm ee}$ and 10--15 keV$_{rm ee}$, respectively.
Liquid Xenon (LXe) is expected to be an excellent target and detector medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Knowledge of LXe ionization and scintillation response to low energy nuclear recoils e xpected from the scattering of WIMPs by Xe nuclei is important for determining the sensitivity of LXe direct detection experiments. Here we report on new measurements of the scintillation yield of Xe recoils with kinetic energy as low as 10 keV. The dependence of the scintillation yield on applied electric field was also measured in the range of 0 to 4 kV/cm. Results are in good agreement with recent theoretical predictions that take into account the effect of biexcitonic collisions in addition to the nuclear quenching effect.
Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $alpha$-Be neutron sources were used to i nduce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا