ﻻ يوجد ملخص باللغة العربية
We show that in the Dirac-Milne universe (a matter-antimatter symmetric universe where the two components repel each other), rotation curves are generically flat beyond the characteristic distance of about 3 virial radii, and that a Tully-Fisher relation with exponent $approx 3$ is satisfied. Using 3D simulations with a modified version of the RAMSES code, we show that the Dirac-Milne cosmology presents a Faber-Jackson relation with a very small scatter and an exponent equal to $approx 3$ between the mass and the velocity dispersion. We also show that the mass derived from the rotation curves assuming Newtonian gravity is systematically overestimated compared to the mass really present. We also show that the Dirac-Milne universe, featuring a polarization between its matter and antimatter components, presents a behavior similar to that of MOND (Modified Newtonian Dynamics), characterized by an additional surface gravity compared to the Newtonian case. We show that in the Dirac-Milne universe, at the present epoch, the intensity of the additional gravitational field $g_{am}$ due to the presence of clouds of antimatter is of the order of a few $10^{-11}$ m/s$^2$, similar to the characteristic acceleration of MOND. We study the evolution of this additional acceleration $g_{am}$ and show that it depends on the redshift, and is therefore not a fundamental constant. Combined with its known concordance properties on SNIa luminosity distance, age, nucleosynthesis and structure formation, the Dirac-Milne cosmology may then represent an interesting alternative to the $Lambda$CDM, MOND, and other scenarios for explaining the Dark Matter and Dark Energy conundrum.
The phenomenological basis for Modified Newtonian Dynamics (MOND) is the radial-acceleration-relation (RAR) between the observed acceleration, $a=V^2_{rot}(r)/r$, and the acceleration accounted for by the observed baryons (stars and cold gas), $a_{ba
We study the kinematics and scaling relations of a sample of 43 giant spiral galaxies that have stellar masses exceeding $10^{11}$ $M_odot$ and optical discs up to 80 kpc in radius. We use a hybrid 3D-1D approach to fit 3D kinematic models to long-sl
Context. Many ellipticals are surrounded by round stellar shells probably stemming from minor mergers. A new method for constraining gravitational potential in elliptical galaxies has recently been suggested. It uses the spectral line profiles of the
We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0
We investigate a sub-sample of the rotation curves consisting of 45 HSB non-bulgy spiral galaxies selected from SPARC (Spitzer Photometry and Accurate Rotation Curves) database by using two dark halo models (NFW and Burkert) and MOdified Newtonian Dy