ﻻ يوجد ملخص باللغة العربية
The negative sign of the anomalous Nernst thermopower ($S_text{ANE}$) observed in Mn-Ga ordered alloys is an attractive property for thermoelectric applications exploiting the anomalous Nernst effect (ANE); however, its origin has not been clarified. In this study, to gain insight into the negative $S_text{ANE}$, we prepared epitaxial thin films of Mn$_{x}$Ga$_{100-x}$ with $x$ ranging from 56.2 to 71.7, and systematically investigated the structural, magnetic, and transport properties including the anomalous Hall effect (AHE) and the ANE. The measured $S_text{ANE}$ is negative for all samples and shows close to one order of magnitude difference among different compositions. Together with the measured transport properties, we were able to separate the two different contributions of the ANE, i.e., one originating from the transverse thermoelectric coefficient ($alpha_{xy}$), and the other one originating from the AHE acting on the longitudinal carrier flow induced by the Seebeck effect. Both contributions are found to be negative for all samples, while the experimentally obtained negative $alpha_{xy}$ exhibits a monotonic increase towards zero with increasing $x$, which is consistent with the tendency indicated by first-principles calculations. Our results show that the large difference in the negative $S_text{ANE}$ is mostly attributed to $alpha_{xy}$, and thus shed light on further enhancement of the ANE in Mn-based ordered alloys.
Ferromagnetic metallic oxides have potential applications in spincaloric devices which utilize the spin property of charge carriers for interconversion of heat and electricity through the spin Seebeck or the anomalous Nernst effect or both. In this w
The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. Th
We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities sigma_{xx} ranging from the low- to the high-conductivity regime. The anomalous Hall conductivity sigma_{xy}^(AH) is extra
The anomalous Hall effect in metal-insulator-semiconductor structures having thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and hole densities changed by the gate electric field. Strong and unanticipated temperature depende
We have studied the effect of Fe addition on the structural and magnetic transitions in the magnetic shape memory alloy Ni-Mn-Ga by substituting systematically each atomic species by Fe. Calorimetric and AC susceptibility measurements have been carri