ﻻ يوجد ملخص باللغة العربية
A new construction of non-Gaussian, rotation-invariant and reflection positive probability measures $mu$ associated with the $varphi ^4_3$-model of quantum field theory is presented. Our construction uses a combination of semigroup methods, and methods of stochastic partial differential equations (SPDEs) for finding solutions and stationary measures of the natural stochastic quantization associated with the $varphi ^4_3$-model. Our starting point is a suitable approximation $mu_{M,N}$ of the measure $mu$ we intend to construct. $mu_{M,N}$ is parametrized by an $M$-dependent space cut-off function $rho_M: {mathbb R}^3rightarrow {mathbb R}$ and an $N$-dependent momentum cut-off function $psi_N: widehat{mathbb R}^3 cong {mathbb R}^3 rightarrow {mathbb R}$, that act on the interaction term (nonlinear term and counterterms). The corresponding family of stochastic quantization equations yields solutions $(X_t^{M,N}, tgeq 0)$ that have $mu_{M,N}$ as an invariant probability measure. By a combination of probabilistic and functional analytic methods for singular stochastic differential equations on negative-indices weighted Besov spaces (with rotation invariant weights) we prove the tightness of the family of continuous processes $(X_t^{M,N},t geq 0)_{M,N}$. Limit points in the sense of convergence in law exist, when both $M$ and $N$ diverge to $+infty$. The limit processes $(X_t; tgeq 0)$ are continuous on the intersection of suitable Besov spaces and any limit point $mu$ of the $mu_{M,N}$ is a stationary measure of $X$. $mu$ is shown to be a rotation-invariant and non-Gaussian probability measure and we provide results on its support. It is also proven that $mu$ satisfies a further important property belonging to the family of axioms for Euclidean quantum fields, it is namely reflection positive.
(Due to the limit on the number of characters for an abstract set by arXiv, the full abstract can not be displayed here. See the abstract in the paper.) We study the construction of the $Phi^3_3$-measure and complete the program on the (non-)construc
We consider a quantum field model with exponential interactions on the two-dimensional torus, which is called the $exp (Phi)_{2}$-quantum field model or H{o}egh-Krohns model. In the present paper, we study the stochastic quantization of this model by
The present paper is a continuation of our previous work on the stochastic quantization of the $exp(Phi)_2$-quantum field model on the two-dimensional torus. Making use of key properties of Gaussian multiplicative chaos and refining the method for si
The (elliptic) stochastic quantization equation for the (massive) $cosh(beta varphi)_2$ model, for the charged parameter in the $L^2$ regime (i.e. $beta^2 < 4 pi$), is studied. We prove the existence, uniqueness and the properties of the invariant me
In this paper the spectral and scattering properties of a family of self-adjoint Dirac operators in $L^2(Omega; mathbb{C}^4)$, where $Omega subset mathbb{R}^3$ is either a bounded or an unbounded domain with a compact $C^2$-smooth boundary, are studi