ﻻ يوجد ملخص باللغة العربية
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to establish the convergence relationship between the regularized process and the original one where in the regularized process, the jump mechanism is replaced by a Poisson dynamic, and jump intensity within the classically forbidden domain goes to infinity as the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck equation for the process with random discharges (i.e. Poisson jumps) are defined on the whole space, while the equation for the limit process is on the half space. However, with the iteration scheme, the difficulty due to the domain differences has been greatly mitigated and the convergence for the stochastic process and the firing rates can be established. Moreover, we find a polynomial-order convergence for the distribution by a re-normalization argument in probability theory. Finally, by numerical experiments, we quantitatively explore the rate and the asymptotic behavior of the convergence for both linear and nonlinear models.
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to estab
We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a lea
Integrate and fire oscillators are widely used to model the generation of action potentials in neurons. In this paper, we discuss small noise asymptotic results for a class of stochastic integrate and fire oscillators (SIFs) in which the buildup of m
In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh-Nagumo neuron model (FHN) in the excitable regime, where
We generalize the evolution model introduced by Guiol, Machado and Schinazi (2010). In our model at odd times a random number X of species is created. Each species is endowed with a random fitness with arbitrary distribution on $[0, 1]$. At even time