ﻻ يوجد ملخص باللغة العربية
I report a tentative ($sim4sigma$) emission line at $ u=100.84,$GHz from COS-3mm-1, a 3mm-selected galaxy reported by Williams et al. 2019 that is undetected at optical and near infrared wavelengths. The line was found in the ALMA Science Archive after re-processing ALMA band 3 observations targeting a different source. Assuming the line corresponds to the $rm CO(6to5)$ transition, this tentative detection implies a spectroscopic redshift of $z=5.857$, in agreement with the galaxys redshift constraints from multi-wavelength photometry. This would make this object the highest redshift 3mm-selected galaxy and one of the highest redshift dusty star-forming galaxies known to-date. Here, I report the characteristics of this tentative detection and the physical properties that can be inferred assuming the line is real. Finally, I advocate for follow-up observations to corroborate this identification and to confirm the high-redshift nature of this optically-dark dusty star-forming galaxy.
We report the detection of a large ($sim90$ kpc) and luminous $mathrm{Lyalpha}$ nebula [$Lmathrm{_{Lyalpha}}$ = $(6.80pm0.08)times 10^{44}$] $rm{,erg,s^{-1}}$ around an optically faint (r$>23$ mag) radio galaxy M1513-2524 at $zmathrm{_{em}}$=3.132. T
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrar
Massive black holes (BHs) in dwarf galaxies can provide strong constraints on BH seeds, however reliably detecting them is notoriously difficult. High resolution radio observations were recently used to identify accreting massive BHs in nearby dwarf
We report the discovery of a galaxy cluster at z=1.62 located in the Spitzer Wide-Area Infrared Extragalactic survey XMM-LSS field. This structure was selected solely as an overdensity of galaxies with red Spitzer/IRAC colors, satisfying [3.6]-[4.5]
New reverberation mapping measurements of the size of the optical iron emission-line region in quasars are provided, and a tentative size-luminosity relation for this component is reported. Combined with lag measurements in low-luminosity sources, th