ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-surface reconstruction at the metamagnetic high-field transition in uranium mononitride

71   0   0.0 ( 0 )
 نشر من قبل Toni Helm
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the electronic and thermodynamic properties of the antiferromagnetic metal uranium mononitride with a Neel temperature $T_Napprox 53,$K. The fabrication of microstructures from single crystals enables us to study the low-temperature metamagnetic transition at approximately $58,$T by high-precision magnetotransport, Hall-effect, and magnetic-torque measurements. We confirm the evolution of the high-field transition from a broad and complex behavior to a sharp first-order-like step, associated with a spin flop at low temperature. In the high-field state, the magnetic contribution to the temperature dependence of the resistivity is suppressed completely. It evolves into an almost quadratic dependence at low temperatures indicative of a metallic character. Our detailed investigation of the Hall effect provides evidence for a prominent Fermi-surface reconstruction as the system is pushed into the high-field state.



قيم البحث

اقرأ أيضاً

Thermoelectric power ($S$) and Hall effect ($R_mathrm{H}$) measurements on the paramagnetic superconductor UTe$_2$ with magnetic field applied along the hard magnetization $b$-axis are reported. The first order nature of the metamagnetic transition a t $H_mathrm{m}=H^b_mathrm{c2}=35$~T leads to drastic consequences on $S$ and $R_mathrm{H}$. In contrast to the field dependence of the specific heat in the normal state through $H_mathrm{m}$, $S(H)$ is not symmetric with respect to $H_mathrm{m}$. This implies a strong interplay between ferromagnetic (FM) fluctuations and a Fermi-surface reconstruction at $H_mathrm{m}$. $R_mathrm{H}$ is very well described by incoherent skew scattering above the coherence temperature $T_mathrm{m}$ corresponding roughly to the temperature of the maximum in the susceptibility $T_{chi_mathrm{max}}$ and coherent skew scattering at lower temperatures. The discontinuous field dependence of both, $S(H)$ and the ordinary Hall coefficient $R_0$, at $H_mathrm{m}$ and at low temperature, provides evidence of a change in the band structure at the Fermi level.
We report an electrical transport study in Ca$_{2-x}$Sr$_{x}$RuO$_4$ single crystals at high magnetic fields ($B$). For $x =0.2$, the Hall constant $R_{xy}$ decreases sharply at an anisotropic metamagnetic (MM) transition reaching its value for Sr$_2 $RuO$_4$ at high fields. A sharp decrease in the $A$ coefficient of the resistivity $T^2$-term and a change in the structure of the angular magnetoresistance oscillations (AMRO) for $B$ rotating in the planes, confirms the reconstruction of the Fermi surface (FS). Our observations and LDA calculations indicate a strong dependence of the FS on the Ca concentration and suggest the coexistence of itinerant and localized electronic states in single layered ruthenates.
The evolution of the charge carrier concentrations and mobilities are examined across the charge-density-wave (CDW) transition in TiSe2. Combined quantum oscillation and magnetotransport measurements show that a small electron pocket dominates the el ectronic properties at low temperatures whilst an electron and hole pocket contribute at room temperature. At the CDW transition, an abrupt Fermi surface reconstruction and a minimum in the electron and hole mobilities are extracted from two-band and Kohler analysis of magnetotransport measurements. The minimum in the mobilities is associated with the overseen role of scattering from the softening CDW mode. With the carrier concentrations and dynamics dominated by the CDW and the associated bosonic mode, our results highlight TiSe2 as a prototypical system to study the Fermi surface reconstruction at a density-wave transition.
We investigate the behavior of ultrasharp metamagnetic transitions in La(5/8-y)Nd(y)Ca(3/8)MnO(3) manganites. These compounds change from a low temperature ferromagnetic metallic state at low Nd doping to a charge-ordered antiferromagnetic insulator for high Nd content. At an intermediate doping a phase-separated state is established. At low temperatures (2 K), we observe an avalanche-like field-induced metamagnetic transition, when the entire compound changes abruptly from one phase to the other. We investigate the signatures of this ultrasharp transition using magnetization and specific heat measurements. We observe a first order transition in the specific heat associated with discontinuous jumps in the magnetization. A strong increase of the sample temperature is simultaneously observed. The results are interpret in terms of latent heat release from the field induced enhancement of the ferromagnetic fraction, triggering the avalanche process.
We report measurements of the de Haas-van Alphen effect in CeIn3 in magnetic fields extending to ~90 T, well above the Neel critical field of Hc ~61 T. The unreconstructed Fermi surface a-sheet is observed in the high magnetic field polarized paramag netic limit, but with its effective mass and Fermi surface volume strongly reduced in size compared to that observed in the low magnetic field paramagnetic regime under pressure. The spheroidal topology of this sheet provides an ideal realization of the transformation from a `large Fermi surface accommodating f-electrons to a `small Fermi surface when the f-electron moments become polarized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا