We study the ballistic transport in integrable lattice models, i.e., the spin XXZ and Hubbard chains, close to the noninteracting limit. The stiffnesses of spin and charge currents reveal, at high temperatures, a discontinuous reduction (jump) when the interaction is introduced. We show that the jumps are related to the large degeneracy of the parent noninteracting models. These degeneracies are properly captured by the degenerate perturbation calculations which may be performed for large systems. We find that the discontinuities and the quasilocality of the conserved current in this limit can be traced back to the nonlocal character of an effective interaction. From the latter observation we identify a class of observables which show discontinuities in both models. We also argue that the known local conserved quantities are insufficient to explain the stiffnesses in the Hubbard chain in the regime of weak interaction.