ﻻ يوجد ملخص باللغة العربية
Chaotic inflation is inconsistent with the observational constraint at 68% CL. Here, we show that the enhancement mechanism with a peak function in the noncanonical kinetic term not only helps the chaotic model $V(phi)=V_0phi^{1/3}$ satisfy the observational constraint at large scales but also enhances the primordial scalar power spectrum by seven orders of magnitude at small scales. The enhanced curvature perturbations can produce primordial black holes of different masses and secondary gravitational waves with different peak frequencies. We also show that the non-Gaussianities of curvature perturbations have little effect on the abundance of primordial black holes and energy density of the scalar-induced secondary gravitational waves.
The production of primordial black hole (PBH) dark matter (DM) and the generation of scalar induced secondary gravitational waves by using the enhancement mechanism with a peak function in the non-canonical kinetic term in natural inflation is discus
The possibility that in the mass range around $10^{-12} M_odot$ most of dark matter constitutes of primordial black holes (PBHs) is a very interesting topic. To produce PBHs with this mass, the primordial scalar power spectrum needs to be enhanced to
We devise a novel mechanism and for the first time demonstrate that the Higgs model in particle physics can drive the inflation to satisfy the cosmic microwave background observations and simultaneously enhance the curvature perturbations at small sc
The formation of primordial black hole (PBH) dark matter and the generation of scalar induced secondary gravitational waves (SIGWs) have been studied in the generic no-scale supergravity inflationary models. By adding an exponential term to the Kahle
We investigate the production of primordial black holes (PBHs) and scalar-induced gravitational waves (GWs) for cosmological models in the Horndeski theory of gravity. The cosmological models of our interest incorporate the derivative self-interactio