ﻻ يوجد ملخص باللغة العربية
Microcapsules are commonly used in applications ranging from therapeutics to personal care products due to their ability to deliver encapsulated species through their porous shells. Here, we demonstrate a simple and scalable approach to fabricate microcapsules with porous shells by interfacial complexation of cellulose nanofibrils and oleylamine, and investigate the rheological properties of suspensions of the resulting microcapsules. The suspensions of neat capsules are viscous liquids whose viscosity increases with volume fraction according to a modified Kreiger-Dougherty relation with a maximum packing fraction of 0.73 and an intrinsic viscosity of 4. When polyacrylic acid (PAA) is added to the internal phase of the microcapsule, however, the suspensions become elastic and display yield stresses with power-law dependencies on capsule volume fraction and PAA concentration. The elasticity appears to originate from associative interactions between microcapsules induced by PAA that resides within the microcapsule shells. These results demonstrate that it is possible to tune the rheological properties of microcapsule suspensions by changing only the composition of the internal phase, thereby providing a novel method to tailor complex fluid rheology.
The rheology of suspensions of Brownian, or colloidal, particles (diameter $d lesssim 1$ $mu$m) differs markedly from that of larger grains ($d gtrsim 50$ $mu$m). Each of these two regimes has been separately studied, but the flow of suspensions with
We explore the rheology predicted by a recently proposed constitutive model for jammed suspensions of soft elastic particles derived from microscopic dynamics [Cuny et al., arXiv:2102.05938]. Our model predicts that the orientation of the anisotropy
Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a solidified state cannot be probed with conventional steady-stat
We study the deformations of pH-responsive spherical microcapsules -- micrometer-scale liquid drops surrounded by thin, solid shells -- under the influence of electrostatic forces. When exposed to a large concentration of NaOH, the microcapsules beco
We develop a statistical framework for the rheology of dense, non-Brownian suspensions, based on correlations in a space representing forces, which is dual to position space. Working with the ensemble of steady state configurations obtained from simu