ﻻ يوجد ملخص باللغة العربية
The formation mechanism of the W50/SS433 complex has long been a mystery. We propose a new scenario in which the SS433 jets themselves form the W50/SS433 system. We carry out magnetohydrodynamics simulations of two-side jet propagation using the public code CANS+. As found in previous jet studies, when the propagating jet is lighter than the surrounding medium, the shocked plasma flows back from the jet tip to the core. We find that the morphology of light jets is spheroidal at early times, and afterward, the shell and wings are developed by the broadening spherical cocoon. The morphology strongly depends on the density ratio of the injected jet to the surrounding medium. Meanwhile, the ratio of the lengths of the two-side jets depends only on the density profile of the surrounding medium. We also find that most of the jet kinetic energy is dissipated at the oblique shock formed by the interaction between the backflow and beam flow, rather than at the jet terminal shock. The position of the oblique shock is spatially consistent with the X-ray and TeV gamma-ray hotspots of W50.
The microquasar SS433 features the most energetic jets known in our Galaxy. A large fraction of the jet kinetic power is delivered to the surrounding W50 nebula at the jet termination shock, from which high-energy emission and cosmic-ray production h
We investigate the interplay between jets from Active Galactic Nuclei (AGNs) and the surrounding InterStellar Medium (ISM) through full 3D, high resolution, Adaptive Mesh Refinement simulations performed with the FLASH code. We follow the jet- ISM sy
The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes have been predicted for both the central binary and the inter
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and w
We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have prod