ﻻ يوجد ملخص باللغة العربية
This letter studies the application of backscatter communications (BackCom) assisted non-orthogonal multiple access (BAC-NOMA) to the envisioned sixth-generation (6G) ultra-massive machine type communications (umMTC). In particular, the proposed BAC-NOMA transmission scheme can realize simultaneous energy and spectrum cooperation between uplink and downlink users, which is important to support massive connectivity and stringent energy constraints in umMTC. Furthermore, a resource allocation problem for maximizing the uplink throughput and suppressing the interference between downlink and uplink transmission is formulated as an optimization problem and the corresponding optimal resource allocation policy is obtained. Computer simulations are provided to demonstrate the superior performance of BAC-NOMA.
The next generation Internet of Things (IoT) exhibits a unique feature that IoT devices have different energy profiles and quality of service (QoS) requirements. In this paper, two energy and spectrally efficient transmission strategies, namely wir
In this letter, the impact of two phase shifting designs, namely random phase shifting and coherent phase shifting, on the performance of intelligent reflecting surface (IRS) assisted non-orthogonal multiple access (NOMA) is studied. Analytical resul
In this paper, we study the uplink channel throughput performance of a proposed novel multiple-antenna hybrid-domain non-orthogonal multiple access (MA-HD-NOMA) scheme. This scheme combines the conventional sparse code multiple access (SCMA) and powe
Non-orthogonal multiple access (NOMA) and spectrum sharing are two potential technologies for providing massive connectivity in beyond fifth-generation (B5G) networks. In this paper, we present the performance analysis of a multi-antenna-assisted two
In this paper, we investigate a non-orthogonal multiple access (NOMA) based mobile edge computing (MEC) network, in which two users may partially offload their respective tasks to a single MEC server through uplink NOMA. We propose a new offloading s