Model-free reinforcement learning algorithms combined with value function approximation have recently achieved impressive performance in a variety of application domains. However, the theoretical understanding of such algorithms is limited, and exist
ing results are largely focused on episodic or discounted Markov decision processes (MDPs). In this work, we present adaptive approximate policy iteration (AAPI), a learning scheme which enjoys a $tilde{O}(T^{2/3})$ regret bound for undiscounted, continuing learning in uniformly ergodic MDPs. This is an improvement over the best existing bound of $tilde{O}(T^{3/4})$ for the average-reward case with function approximation. Our algorithm and analysis rely on online learning techniques, where value functions are treated as losses. The main technical novelty is the use of a data-dependent adaptive learning rate coupled with a so-called optimistic prediction of upcoming losses. In addition to theoretical guarantees, we demonstrate the advantages of our approach empirically on several environments.
Off-policy evaluation provides an essential tool for evaluating the effects of different policies or treatments using only observed data. When applied to high-stakes scenarios such as medical diagnosis or financial decision-making, it is crucial to p
rovide provably correct upper and lower bounds of the expected reward, not just a classical single point estimate, to the end-users, as executing a poor policy can be very costly. In this work, we propose a provably correct method for obtaining interval bounds for off-policy evaluation in a general continuous setting. The idea is to search for the maximum and minimum values of the expected reward among all the Lipschitz Q-functions that are consistent with the observations, which amounts to solving a constrained optimization problem on a Lipschitz function space. We go on to introduce a Lipschitz value iteration method to monotonically tighten the interval, which is simple yet efficient and provably convergent. We demonstrate the practical efficiency of our method on a range of benchmarks.
In this work, we study algorithms for learning in infinite-horizon undiscounted Markov decision processes (MDPs) with function approximation. We first show that the regret analysis of the Politex algorithm (a version of regularized policy iteration)
can be sharpened from $O(T^{3/4})$ to $O(sqrt{T})$ under nearly identical assumptions, and instantiate the bound with linear function approximation. Our result provides the first high-probability $O(sqrt{T})$ regret bound for a computationally efficient algorithm in this setting. The exact implementation of Politex with neural network function approximation is inefficient in terms of memory and computation. Since our analysis suggests that we need to approximate the average of the action-value functions of past policies well, we propose a simple efficient implementation where we train a single Q-function on a replay buffer with past data. We show that this often leads to superior performance over other implementation choices, especially in terms of wall-clock time. Our work also provides a novel theoretical justification for using experience replay within policy iteration algorithms.
Recent years have witnessed a tremendous improvement of deep reinforcement learning. However, a challenging problem is that an agent may suffer from inefficient exploration, particularly for on-policy methods. Previous exploration methods either rely
on complex structure to estimate the novelty of states, or incur sensitive hyper-parameters causing instability. We propose an efficient exploration method, Multi-Path Policy Optimization (MPPO), which does not incur high computation cost and ensures stability. MPPO maintains an efficient mechanism that effectively utilizes a population of diverse policies to enable better exploration, especially in sparse environments. We also give a theoretical guarantee of the stable performance. We build our scheme upon two widely-adopted on-policy methods, the Trust-Region Policy Optimization algorithm and Proximal Policy Optimization algorithm. We conduct extensive experiments on several MuJoCo tasks and their sparsified variants to fairly evaluate the proposed method. Results show that MPPO significantly outperforms state-of-the-art exploration methods in terms of both sample efficiency and final performance.
A classic setting of the stochastic K-armed bandit problem is considered in this note. In this problem it has been known that KL-UCB policy achieves the asymptotically optimal regret bound and KL-UCB+ policy empirically performs better than the KL-UC
B policy although the regret bound for the original form of the KL-UCB+ policy has been unknown. This note demonstrates that a simple proof of the asymptotic optimality of the KL-UCB+ policy can be given by the same technique as those used for analyses of other known policies.