ﻻ يوجد ملخص باللغة العربية
We present a new characterization of the relations between star-formation rate, stellar mass and molecular gas mass surface densities at different spatial scales across galaxies (from galaxy wide to kpc-scales). To do so we make use of the largest sample combining spatially-resolved spectroscopic information with CO observations, provided by the EDGE-CALIFA survey, together with new single dish CO observations obtained by APEX. We show that those relations are the same at the different explored scales, sharing the same distributions for the explored data, with similar slope, intercept and scatter (when characterized by a simple power-law). From this analysis, we propose that these relations are the projection of a single relation between the three properties that follows a distribution well described by a line in the three-dimension parameter space. Finally, we show that observed secondary relations between the residuals and the considered parameters are fully explained by the correlation between the uncertainties, and therefore have no physical origin. We discuss these results in the context of the hypothesis of self-regulation of the star-formation process.
We present a multilinear analysis to determine the significant predictors of star formation in galaxies using the combined EDGE-CALIFA sample of galaxies. We analyze 1845 kpc-scale lines of sight across 39 galaxies with molecular line emission measur
The $M_{BH}$ - $sigma_{star}$ relation is considered a result of co-evolution between the host galaxies and their super-massive black holes. For elliptical-bulge hosting inactive galaxies, this relation is well established, but there is still a debat
We present the relation between the star formation rate surface density, $Sigma_{rm SFR}$, and the hydrostatic mid-plane pressure, P$_{rm h}$, for 4260 star-forming regions of kpc size located in 96 galaxies included in the EDGE-CALIFA survey coverin
We present a re-calibration of the $M_{BH}-sigma_{star}$ relation, based on a sample of 16 reverberation-mapped galaxies with newly determined bulge stellar velocity dispersions ($sigma_{star}$) from integral-field spectroscopy (IFS), and a sample of
We analyze the emission line profiles detected in deep optical spectra of quasars to derive the mass of their super-massive black holes (SMBH) following the single-epoch virial method. Our sample consists in 6 radio-loud quasars and 4 radio-quiet qua