ترغب بنشر مسار تعليمي؟ اضغط هنا

Algorithms for Nonnegative $C^2(mathbb{R}^2)$ Interpolation

312   0   0.0 ( 0 )
 نشر من قبل Fushuai Jiang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $ E subset mathbb{R}^2 $ be a finite set, and let $ f : E to [0,infty) $. In this paper, we address the algorithmic aspects of nonnegative $C^2$ interpolation in the plane. Specifically, we provide an efficient algorithm to compute a nonnegative $C^2(mathbb{R}^2)$ extension of $ f $ with norm within a universal constant factor of the least possible. We also provide an efficient algorithm to approximate the trace norm.



قيم البحث

اقرأ أيضاً

Given $ -infty< lambda < Lambda < infty $, $ E subset mathbb{R}^n $ finite, and $ f : E to [lambda,Lambda] $, how can we extend $ f $ to a $ C^m(mathbb{R}^n) $ function $ F $ such that $ lambdaleq F leq Lambda $ and $ ||F||_{C^m(mathbb{R}^n)} $ is wi thin a constant multiple of the least possible, with the constant depending only on $ m $ and $ n $? In this paper, we provide the solution to the problem for the case $ m = 2 $. Specifically, we construct a (parameter-dependent, nonlinear) $ C^2(mathbb{R}^n) $ extension operator that preserves the range $[lambda,Lambda]$, and we provide an efficient algorithm to compute such an extension using $ O(Nlog N) $ operations, where $ N = #(E) $.
391 - Fushuai Jiang 2019
Let $ f $ be a real-valued function on a compact subset in $ mathbb{R}^n $. We show how to decide if $ f $ extends to a nonnegative and $ C^1 $ function on $ mathbb{R}^n $. There has been no known result for nonnegative $ C^m $ extension from a gener al compact set $ E $ when $ m > 0 $. The nonnegative extension problem for $ m geq 2 $ remains open.
This paper is devoted to $L^2$ estimates for trilinear oscillatory integrals of convolution type on $mathbb{R}^2$. The phases in the oscillatory factors include smooth functions and polynomials. We shall establish sharp $L^2$ decay estimates of trili near oscillatory integrals with smooth phases, and then give $L^2$ uniform estimates for these integrals with polynomial phases.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا