ترغب بنشر مسار تعليمي؟ اضغط هنا

Civil Rephrases Of Toxic Texts With Self-Supervised Transformers

117   0   0.0 ( 0 )
 نشر من قبل Leo Laugier
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Platforms that support online commentary, from social networks to news sites, are increasingly leveraging machine learning to assist their moderation efforts. But this process does not typically provide feedback to the author that would help them contribute according to the community guidelines. This is prohibitively time-consuming for human moderators to do, and computational approaches are still nascent. This work focuses on models that can help suggest rephrasings of toxic comments in a more civil manner. Inspired by recent progress in unpaired sequence-to-sequence tasks, a self-supervised learning model is introduced, called CAE-T5. CAE-T5 employs a pre-trained text-to-text transformer, which is fine tuned with a denoising and cyclic auto-encoder loss. Experimenting with the largest toxicity detection dataset to date (Civil Comments) our model generates sentences that are more fluent and better at preserving the initial content compared to earlier text style transfer systems which we compare with using several scoring systems and human evaluation.



قيم البحث

اقرأ أيضاً

This paper investigates two techniques for developing efficient self-supervised vision transformers (EsViT) for visual representation learning. First, we show through a comprehensive empirical study that multi-stage architectures with sparse self-att entions can significantly reduce modeling complexity but with a cost of losing the ability to capture fine-grained correspondences between image regions. Second, we propose a new pre-training task of region matching which allows the model to capture fine-grained region dependencies and as a result significantly improves the quality of the learned vision representations. Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation, outperforming prior arts with around an order magnitude of higher throughput. When transferring to downstream linear classification tasks, EsViT outperforms its supervised counterpart on 17 out of 18 datasets. The code and models will be publicly available.
Emotion recognition is a challenging task due to limited availability of in-the-wild labeled datasets. Self-supervised learning has shown improvements on tasks with limited labeled datasets in domains like speech and natural language. Models such as BERT learn to incorporate context in word embeddings, which translates to improved performance in downstream tasks like question answering. In this work, we extend self-supervised training to multi-modal applications. We learn multi-modal representations using a transformer trained on the masked language modeling task with audio, visual and text features. This model is fine-tuned on the downstream task of emotion recognition. Our results on the CMU-MOSEI dataset show that this pre-training technique can improve the emotion recognition performance by up to 3% compared to the baseline.
A challenge for named entity disambiguation (NED), the task of mapping textual mentions to entities in a knowledge base, is how to disambiguate entities that appear rarely in the training data, termed tail entities. Humans use subtle reasoning patter ns based on knowledge of entity facts, relations, and types to disambiguate unfamiliar entities. Inspired by these patterns, we introduce Bootleg, a self-supervised NED system that is explicitly grounded in reasoning patterns for disambiguation. We define core reasoning patterns for disambiguation, create a learning procedure to encourage the self-supervised model to learn the patterns, and show how to use weak supervision to enhance the signals in the training data. Encoding the reasoning patterns in a simple Transformer architecture, Bootleg meets or exceeds state-of-the-art on three NED benchmarks. We further show that the learned representations from Bootleg successfully transfer to other non-disambiguation tasks that require entity-based knowledge: we set a new state-of-the-art in the popular TACRED relation extraction task by 1.0 F1 points and demonstrate up to 8% performance lift in highly optimized production search and assistant tasks at a major technology company
This paper addresses the identification of toxic, engaging, and fact-claiming comments on social media. We used the dataset made available by the organizers of the GermEval-2021 shared task containing over 3,000 manually annotated Facebook comments i n German. Considering the relatedness of the three tasks, we approached the problem using large pre-trained transformer models and multitask learning. Our results indicate that multitask learning achieves performance superior to the more common single task learning approach in all three tasks. We submit our best systems to GermEval-2021 under the team name WLV-RIT.
We are witnessing a modeling shift from CNN to Transformers in computer vision. In this work, we present a self-supervised learning approach called MoBY, with Vision Transformers as its backbone architecture. The approach basically has no new inventi ons, which is combined from MoCo v2 and BYOL and tuned to achieve reasonably high accuracy on ImageNet-1K linear evaluation: 72.8% and 75.0% top-1 accuracy using DeiT-S and Swin-T, respectively, by 300-epoch training. The performance is slightly better than recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks. More importantly, the general-purpose Swin Transformer backbone enables us to also evaluate the learnt representations on downstream tasks such as object detection and semantic segmentation, in contrast to a few recent approaches built on ViT/DeiT which only report linear evaluation results on ImageNet-1K due to ViT/DeiT not tamed for these dense prediction tasks. We hope our results can facilitate more comprehensive evaluation of self-supervised learning methods designed for Transformer architectures. Our code and models are available at https://github.com/SwinTransformer/Transformer-SSL, which will be continually enriched.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا