ﻻ يوجد ملخص باللغة العربية
The Stabbing Planes proof system was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas -- certain unsatisfiable systems of linear equations mod 2 -- which are canonical hard examples for many algebraic proof systems. In a recent (and surprising) result, Dadush and Tiwari showed that these short refutations of the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis done on the Cutting Planes system to be lifted to practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes. In this paper we make progress towards answering both of these questions. First, we show that any Stabbing Planes proof with bounded coefficients SP* can be translated into Cutting Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first exponential lower bounds on SP*. Using this translation, we extend the result of Dadush and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas.
Let $G = (V,w)$ be a weighted undirected graph with $m$ edges. The cut dimension of $G$ is the dimension of the span of the characteristic vectors of the minimum cuts of $G$, viewed as vectors in ${0,1}^m$. For every $n ge 2$ we show that the cut dim
We study the NP-hard textsc{$k$-Sparsest Cut} problem ($k$SC) in which, given an undirected graph $G = (V, E)$ and a parameter $k$, the objective is to partition vertex set into $k$ subsets whose maximum edge expansion is minimized. Herein, the edge
A stable cut of a graph is a cut whose weight cannot be increased by changing the side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of their neighbors on the other side. In this paper we study Min Sta
We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of classical algorithms. (1) We prove that every (quantum or classical) o
This chapter provides a hands-on tutorial on the important technique known as self-reducibility. Through a series of Challenge Problems that are theorems that the reader will---after being given definitions and tools---try to prove, the tutorial will